A013915 a(n) = F(n) + L(n) + n, where F(n) (A000045) and L(n) (A000204) are Fibonacci and Lucas numbers respectively.
3, 3, 7, 10, 16, 24, 37, 57, 89, 140, 222, 354, 567, 911, 1467, 2366, 3820, 6172, 9977, 16133, 26093, 42208, 68282, 110470, 178731, 289179, 467887, 757042, 1224904, 1981920, 3206797, 5188689, 8395457, 13584116, 21979542, 35563626, 57543135
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, -2, -1, 1).
Programs
-
Magma
I:=[3, 3, 7, 10]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)-Self(n-3)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 14 2012
-
Mathematica
LinearRecurrence[{3,-2,-1, 1},{3,3,7,10},40] (* Vincenzo Librandi, Feb 14 2012 *)
Formula
a(n) = a(n-1) + a(n-2) - n + 3.
From R. J. Mathar, Nov 04 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: (-3 + 6*x - 4*x^2 + 2*x^3)/((x^2+x-1) * (x-1)^2).
a(n) = n + A013655(n). (End)
Extensions
More terms from Erich Friedman