cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A013930 Sum of first a(n) squarefrees is squarefree.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 20, 23, 25, 26, 27, 29, 32, 34, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 53, 54, 56, 58, 60, 61, 63, 64, 65, 69, 70, 71, 74, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90, 92, 94, 95, 96, 98, 100, 102, 103, 104, 106, 107, 108, 110, 111
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Extensions

More terms from David W. Wilson

A013931 a(n) is squarefree and sum of all squarefrees <= a(n) is squarefree.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 13, 15, 19, 22, 26, 30, 31, 35, 38, 39, 41, 43, 51, 55, 59, 65, 66, 67, 69, 70, 73, 74, 78, 79, 82, 85, 86, 89, 93, 95, 97, 102, 103, 105, 110, 111, 113, 118, 122, 123, 129, 130, 131, 133, 134, 137, 139, 142, 143, 145, 149, 154, 155, 157, 159, 163, 166, 167
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{nn=200,sf},sf=Select[Range[nn],SquareFreeQ];Transpose[ Select[ Thread[ {sf, Accumulate[sf]}],SquareFreeQ[Last[#]]&]][[1]]] (* Harvey P. Dale, Feb 09 2013 *)

Formula

a(n) = A005117(A013930(n)). - Amiram Eldar, Mar 07 2021

Extensions

More terms from David W. Wilson

A364797 Prime powers that are equal to the sum of the first k prime powers (not including 1) for some k.

Original entry on oeis.org

2, 5, 9, 29, 49, 137, 281, 359, 449, 1579, 2029, 2281, 2677, 5519, 12527, 13229, 15451, 17047, 22409, 24389, 25931, 29191, 32687, 42937, 45757, 53239, 56443, 59743, 70201, 81677, 90863, 95087, 101627, 113111, 169343, 200407, 206911, 256049, 302977, 330133, 338707, 356263
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 08 2023

Keywords

Examples

			49 is a term because 49 is a prime power and 49 = 2 + 3 + 4 + 5 + 7 + 8 + 9 + 11.
		

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Select[Range[2250], PrimePowerQ]], PrimePowerQ]
  • PARI
    list(lim) = {my(s = 0); for(p = 1, lim, if(isprimepower(p), s += p; if(isprimepower(s), print1(s, ", "))));} \\ Amiram Eldar, Jun 20 2025

A020643 a(n)-th squarefree is sum of first k squarefrees for some k.

Original entry on oeis.org

1, 3, 5, 8, 12, 22, 36, 55, 77, 102, 133, 169, 187, 248, 296, 320, 343, 395, 483, 547, 652, 768, 809, 851, 893, 935, 1023, 1065, 1158, 1206, 1256, 1359, 1412, 1522, 1631, 1746, 1805, 1932, 1992, 2057, 2316, 2385, 2454, 2665, 2812, 2887, 3043, 3119, 3199, 3279
Offset: 1

Views

Author

N. J. A. Sloane, Renaud Lifchitz (100637.64(AT)CompuServe.COM), and David W. Wilson

Keywords

Crossrefs

Programs

  • Mathematica
    With[{s = Select[Range[6000], SquareFreeQ]}, Position[s, #] & /@ Select[Accumulate[s], # <= s[[-1]] && SquareFreeQ[#] &] // Flatten] (* Amiram Eldar, Aug 19 2025 *)

Formula

A005117(a(n)) = A013932(n). - Amiram Eldar, Aug 19 2025

A364947 Prime powers that are equal to the sum of the first k prime powers (including 1) for some k.

Original entry on oeis.org

1, 3, 79, 163, 499, 947, 1279, 5297, 6689, 9629, 10853, 17467, 21001, 23887, 25411, 29761, 32089, 33289, 47947, 49429, 55633, 80687, 84697, 96157, 116719, 119159, 126641, 131783, 136991, 153371, 156227, 167861, 182969, 215249, 243161, 257921, 280897, 288853
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 14 2023

Keywords

Examples

			79 is a term because 79 is a prime power and 79 = 1 + 2 + 3 + 4 + 5 + 7 + 8 + 9 + 11 + 13 + 16 = 1 + 2 + 3 + 2^2 + 5 + 7 + 2^3 + 3^2 + 11 + 13 + 2^4.
		

Crossrefs

Intersection of A000961 and A024918.

Programs

  • Mathematica
    Select[Accumulate[Select[Range[2000], # == 1 || PrimePowerQ[#] &]], # == 1 || PrimePowerQ[#] &]
  • PARI
    isp(n) = n == 1 || isprimepower(n);
    list(lim) = {my(s = 0); for(p = 1, lim, if(isp(p), s += p; if(isp(s), print1(s, ", "))));} \\ Amiram Eldar, Jun 20 2025

A364948 Perfect powers that are equal to the sum of the first k perfect powers > 1 for some k.

Original entry on oeis.org

4, 121, 2548735225
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 14 2023

Keywords

Examples

			121 is a term because 121 = 11^2 = 4 + 8 + 9 + 16 + 25 + 27 + 32 = 2^2 + 2^3 + 3^2 + 2^4 + 5^2 + 3^3 + 2^5.
		

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Select[Range[3723875], GCD @@ FactorInteger[#][[All, 2]] > 1 &]], GCD @@ FactorInteger[#][[All, 2]] > 1 &]
Showing 1-6 of 6 results.