A078649 Numbers n such that A000002(n)=A000002(n+1) where A000002 is the Kolakoski sequence.
2, 4, 8, 11, 13, 16, 18, 22, 26, 28, 31, 35, 38, 40, 44, 48, 51, 53, 56, 58, 62, 65, 67, 70, 74, 78, 80, 83, 85, 89, 92, 94, 97, 99, 103, 107, 110, 112, 115, 119, 121, 124, 126, 130, 133, 135, 138, 140, 144, 148, 150, 153, 157, 160, 162, 165, 167, 171, 175, 178, 180
Offset: 1
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a078649 n = a078649_list !! (n-1) a078649_list = map (+ 1) $ filter ((== 0) . a054354) [1..] -- Reinhard Zumkeller, Aug 03 2013
-
Maple
isA078649 := proc(n) if A000002(n) = A000002(n+1) then true; else false; end if; end proc: A078649 := proc(n) option remember; if n = 1 then 2; else for a from procname(n-1)+1 do if isA078649(a) then return a; end if; end do: end if; end proc: seq(A078649(n),n=1..50) ; # R. J. Mathar, Nov 15 2014
-
Mathematica
a2 = {1, 2, 2}; Do[ a2 = Join[a2, {1+Mod[n-1, 2]}], {n, 3, 80}, {a2[[n]]}]; a3 = Accumulate[a2]; Complement[ Range[ Last[a3]], a3] (* Jean-François Alcover, Jun 18 2013 *)
Formula
a(n) is probably asymptotic to 3*n.
Comments