A013988 Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0).
1, 5, 1, 55, 15, 1, 935, 295, 30, 1, 21505, 7425, 925, 50, 1, 623645, 229405, 32400, 2225, 75, 1, 21827575, 8423415, 1298605, 103600, 4550, 105, 1, 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1, 42061737025, 17398082625, 3016869625, 289426830, 16929255, 621810, 14070, 180, 1
Offset: 1
Examples
Triangle begins as: 1; 5, 1; 55, 15, 1; 935, 295, 30, 1; 21505, 7425, 925, 50, 1; 623645, 229405, 32400, 2225, 75, 1; 21827575, 8423415, 1298605, 103600, 4550, 105, 1; 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
- Index entries for sequences related to Bessel functions or polynomials
Crossrefs
Programs
-
Magma
function T(n,k) // T = A013988 if k eq 0 then return 0; elif k eq n then return 1; else return (6*(n-1)-k)*T(n-1,k) + T(n-1,k-1); end if; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
Mathematica
(* First program *) rows = 10; b[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]]; A = Table[b[n, m], {n, 1, rows}, {m, 1, rows}] // Inverse // Abs; A013988 = Table[A[[n, m]], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k==0, 0, If[k==n, 1, (6*(n-1) -k)*T[n-1,k] +T[n-1, k-1]]]; Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 03 2023 *)
-
Sage
# uses[inverse_bell_matrix from A264428] # Adds 1,0,0,0, ... as column 0 at the left side of the triangle. inverse_bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
Comments