cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013988 Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0).

Original entry on oeis.org

1, 5, 1, 55, 15, 1, 935, 295, 30, 1, 21505, 7425, 925, 50, 1, 623645, 229405, 32400, 2225, 75, 1, 21827575, 8423415, 1298605, 103600, 4550, 105, 1, 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1, 42061737025, 17398082625, 3016869625, 289426830, 16929255, 621810, 14070, 180, 1
Offset: 1

Views

Author

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A049224; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n, m) = S2p(-5; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n,m) (Stirling 2nd kind). T(n, 1) = A008543(n-1).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016

Examples

			Triangle begins as:
          1;
          5,         1;
         55,        15,        1;
        935,       295,       30,       1;
      21505,      7425,      925,      50,      1;
     623645,    229405,    32400,    2225,     75,     1;
   21827575,   8423415,  1298605,  103600,   4550,   105,    1;
  894930575, 358764175, 59069010, 5235405, 271950,  8330,  140,   1;
		

Crossrefs

Cf. A028844 (row sums).
Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), A004747 (m=3), A000369 (m=4), A011801 (m=5), this sequence (m=6).

Programs

  • Magma
    function T(n,k) // T = A013988
      if k eq 0 then return 0;
      elif k eq n then return 1;
      else return (6*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
  • Mathematica
    (* First program *)
    rows = 10;
    b[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]];
    A = Table[b[n, m], {n, 1, rows}, {m, 1, rows}] // Inverse // Abs;
    A013988 = Table[A[[n, m]], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k==0, 0, If[k==n, 1, (6*(n-1) -k)*T[n-1,k] +T[n-1, k-1]]];
    Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 03 2023 *)
  • Sage
    # uses[inverse_bell_matrix from A264428]
    # Adds 1,0,0,0, ... as column 0 at the left side of the triangle.
    inverse_bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
    

Formula

T(n, m) = n!*A049224(n, m)/(m!*6^(n-m));
T(n+1, m) = (6*n-m)*T(n, m) + T(n, m-1), for n >= m >= 1, with T(n, m) = 0, n
E.g.f. of m-th column: ((1 - (1-6*x)^(1/6))^m)/m!.
Sum_{k=1..n} T(n, k) = A028844(n).

Extensions

New name from Peter Luschny, Jan 16 2016