A013998 Unrestricted Perrin pseudoprimes.
271441, 904631, 16532714, 24658561, 27422714, 27664033, 46672291, 102690901, 130944133, 196075949, 214038533, 517697641, 545670533, 801123451, 855073301, 903136901, 970355431, 1091327579, 1133818561, 1235188597, 1389675541, 1502682721, 2059739221, 2304156469, 2976407809, 3273820903
Offset: 1
Keywords
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..1702 (first 658 terms from Robert Harley)
- William W. Adams and Daniel Shanks, Strong primality tests that are not sufficient, Math. Comp. 39 (1982), 255-300.
- Robert Dougherty-Bliss, Experimental Methods in Number Theory and Combinatorics, Ph. D. Dissertation, Rutgers Univ. (2024). See p. 34.
- Jon Grantham, There are infinitely many Perrin pseudoprimes, Journal of Number Theory Volume 130, Issue 5, May 2010, Pages 1117-1128.
- Christian Holzbaur, Perrin pseudoprimes [Original link broke many years ago. This is a cached copy from the WayBack machine, dated Apr 24 2006]
- Dana Jacobsen, Pseudoprime Statistics, Tables, and Data
- Holger Stephan, Perrin pseudoprimes up to 10^16 with factorization. [Note: this is not a complete list of Perrin pseudoprimes in the range, _Dana Jacobsen_, May 10 2015]
- Holger Stephan, Perrin pseudoprimes up to 10^16 with factorization. [Note: this is not a complete list of Perrin pseudoprimes in the range, _Dana Jacobsen_, May 10 2015] [Cached copy, with permission]
- Holger Stephan, Millions of Perrin pseudoprimes including a few giants, arXiv:2002.03756 [math.NA], 2020.
- Ian Stewart, Tales of a Neglected Number. Mathematical Recreations, Scientific American, 6 (1996), 92-93.
- Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
- Eric Weisstein's World of Mathematics, Perrin Pseudoprime.
- Index entries for sequences related to pseudoprimes
Programs
-
PARI
N=10^10; default(primelimit,N); M = [0, 1, 0; 0, 0, 1; 1, 1, 0]; a(n)=lift( trace( Mod(M,n)^n ) ); /* A215339(n) */ { for (n=1,N, if ( isprime(n), next() ); if ( a(n)==0, print1(n,", "); ); ); } /* Joerg Arndt, Aug 16 2012 */
-
Perl
use ntheory ":all"; forcomposites { say if is_perrin_pseudoprime($_) } 1e10; # Dana Jacobsen, May 10 2015
Extensions
More terms from alipson(AT)cix.compulink.co.uk (Andrew Lipson)
Comments