cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A001608 Perrin sequence (or Ondrej Such sequence): a(n) = a(n-2) + a(n-3) with a(0) = 3, a(1) = 0, a(2) = 2.

Original entry on oeis.org

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, 1130, 1497, 1983, 2627, 3480, 4610, 6107, 8090, 10717, 14197, 18807, 24914, 33004, 43721, 57918, 76725, 101639, 134643, 178364, 236282, 313007, 414646, 549289
Offset: 0

Views

Author

Keywords

Comments

Has been called the skiponacci sequence or skiponacci numbers. - N. J. A. Sloane, May 24 2013
For n >= 3, also the numbers of maximal independent vertex sets, maximal matchings, minimal edge covers, and minimal vertex covers in the n-cycle graph C_n. - Eric W. Weisstein, Mar 30 2017 and Aug 03 2017
With the terms indexed as shown, has property that p prime => p divides a(p). The smallest composite n such that n divides a(n) is 521^2. For quotients a(p)/p, where p is prime, see A014981.
Asymptotically, a(n) ~ r^n, with r=1.3247179572447... the inverse of the real root of 1-x^2-x^3=0 (see A060006). If n>9 then a(n)=round(r^n). - Ralf Stephan, Dec 13 2002
The recursion can be used to compute a(-n). The result is -A078712(n). - T. D. Noe, Oct 10 2006
For n>=3, a(n) is the number of maximal independent sets in a cycle of order n. - Vincent Vatter, Oct 24 2006
Pisano period lengths are given in A104217. - R. J. Mathar, Aug 10 2012
From Roman Witula, Feb 01 2013: (Start)
Let r1, r2 and r3 denote the roots of x^3 - x - 1. Then the following identity holds:
a(k*n) + (a(k))^n - (a(k) - r1^k)^n - (a(k) - r2^k)^n - (a(k) - r3^k)^n
= 0 for n = 0, 1, 2,
= 6 for n = 3,
= 12*a(k) for n = 4,
= 10*[2*(a(k))^2 - a(-k)] for n = 5,
= 30*a(k)*[(a(k))^2 - a(-k)] for n = 6,
= 7*[6*(a(k))^4 - 9*a(-k)*(a(k))^2 + 2*(a(-k))^2 - a(k)] for n = 7,
= 56*a(k)*[((a(k))^2 - a(-k))^2 - a(k)/2] for n = 8,
where a(-k) = -A078712(k) and the formula (5.40) from the paper of Witula and Slota is used. (End)
The parity sequence of a(n) is periodic with period 7 and has the form (1,0,0,1,0,1,1). Hence we get that a(n) and a(2*n) are congruent modulo 2. Similarly we deduce that a(n) and a(3*n) are congruent modulo 3. Is it true that a(n) and a(p*n) are congruent modulo p for every prime p? - Roman Witula, Feb 09 2013
The trinomial x^3 - x - 1 divides the polynomial x^(3*n) - a(n)*x^(2*n) + ((a(n)^2 - a(2*n))/2)*x^n - 1 for every n>=1. For example, for n=3 we obtain the factorization x^9 - 3*x^6 + 2*x^3 - 1 = (x^3 - x - 1)*(x^6 + x^4 - 2*x^3 + x^2 - x + 1). Sketch of the proof: Let p,s,t be roots of the Perrin polynomial x^3 - x - 1. Then we have (a(n))^2 = (p^n + s^n + t^n)^2 = a(2*n) + 2*a(n)*x^n -2*x^n + 2/x^n for every x = p,s,t, i.e., x^(3*n) - a(n)*x^(2*n) + ((a(n)^2 - a(2*n))/2)*x^n - 1 = 0 for every x = p,s,t, which finishes the proof. By discussion of the power(a(n))^3 = (p^n + s^n + t^n)^3 it can be deduced that the trinomial x^3 - x - 1 divides the polynomial 2*x^(4*n) - a(n)*x^(3*n) - a(2*n)*x^(2*n) + ((a(n)^3 - a(3*n) - 3)/3)*x^n - a(n) = 0. Co-author of these divisibility relations is also my young student Szymon Gorczyca (13 years old as of 2013). - Roman Witula, Feb 09 2013
The sum of powers of the real root and complex roots of x^3-x-1=0 as expressed as powers of the plastic number r, (see A060006). Let r0=1, r1=r, r2=1+r^(-1) and c0=2, c1=-r and c3 = r^(-5) then a(n) = r(n-2)+r(n-3) + c(n-2)+c(n-3). Example: a(5) = 1 + r^(-1) + 1 + r + 2 - r + r^(-5) = 4 + r^(-1) + r^(-5) = 5. - Richard Turk, Jul 14 2016
Also the number of minimal total dominating sets in the n-sun graph. - Eric W. Weisstein, Apr 27 2018
Named after the French engineer François Olivier Raoul Perrin (1841-1910). - Amiram Eldar, Jun 05 2021
a(p) = p*A127687(p) for p prime. - Robert FERREOL, Apr 09 2024

Examples

			From _Roman Witula_, Feb 01 2013: (Start)
We note that if a + b + c = 0 then:
1) a^3 + b^3 + c^3 = 3*a*b*c,
2) a^4 + b^4 + c^4 = 2*((a^2 + b^2 + c^2)/2)^2,
3) (a^5 + b^5 + c^5)/5 = (a^3 + b^3 + c^3)/3 * (a^2 +
    b^2  + c^2)/2,
4) (a^7 + b^7 + c^7)/7 = (a^5 + b^5 + c^5)/5 * (a^2 + b^2 + c^2)/2 = 2*(a^3 + b^3 + c^3)/3 * (a^4 + b^4 + c^4)/4,
5) (a^7 + b^7 + c^7)/7 * (a^3 + b^3 + c^3)/3 = ((a^5 + b^5 + c^5)/5)^2.
Hence, by the Binet formula for a(n) we obtain the relations: a(3) = 3, a(4) = 2*(a(2)/2)^2 = 2, a(5)/5 = a(3)/3 * a(2)/2, i.e., a(5) = 5, and similarly that a(7) = 7. (End)
		

References

  • Olivier Bordellès, Thèmes d'Arithmétique, Ellipses, 2006, Exercice 4.11, p. 127.0
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
  • Dmitry Fomin, On the properties of a certain recursive sequence, Mathematics and Informatics Quarterly, Vol. 3 (1993), pp. 50-53.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 70.
  • Manfred Schroeder, Number Theory in Science and Communication, 3rd ed., Springer, 1997.
  • A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See Q_n.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Closely related to A182097.
Cf. A000931, bisection A109377.
Cf. A013998 (Unrestricted Perrin pseudoprimes).
Cf. A018187 (Restricted Perrin pseudoprimes).

Programs

  • GAP
    a:=[3,0,2];; for n in [4..20] do a[n]:=a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Jul 12 2018
    
  • Haskell
    a001608 n = a000931_list !! n
    a001608_list = 3 : 0 : 2 : zipWith (+) a001608_list (tail a001608_list)
    -- Reinhard Zumkeller, Feb 10 2011
    
  • Magma
    I:=[3,0,2]; [n le 3 select I[n] else Self(n-2) +Self(n-3): n in [1..50]]; // G. C. Greubel, Mar 18 2019
    
  • Maple
    A001608 :=proc(n) option remember; if n=0 then 3 elif n=1 then 0 elif n=2 then 2 else procname(n-2)+procname(n-3); fi; end proc;
    [seq(A001608(n),n=0..50)]; # N. J. A. Sloane, May 24 2013
  • Mathematica
    LinearRecurrence[{0, 1, 1}, {3, 0, 2}, 50] (* Harvey P. Dale, Jun 26 2011 *)
    per = Solve[x^3 - x - 1 == 0, x]; f[n_] := Floor @ Re[N[ per[[1, -1, -1]]^n + per[[2, -1, -1]]^n + per[[3, -1, -1]]^n]]; Array[f, 46, 0] (* Robert G. Wilson v, Jun 29 2010 *)
    a[n_] := n*Sum[Binomial[k, n-2*k]/k, {k, 1, n/2}]; a[0]=3; Table[a[n] , {n, 0, 45}] (* Jean-François Alcover, Oct 04 2012, after Vladimir Kruchinin *)
    CoefficientList[Series[(3 - x^2)/(1 - x^2 - x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 03 2015 *)
    Table[RootSum[-1 - # + #^3 &, #^n &], {n, 0, 20}] (* Eric W. Weisstein, Mar 30 2017 *)
    RootSum[-1 - # + #^3 &, #^Range[0, 20] &] (* Eric W. Weisstein, Dec 30 2017 *)
  • PARI
    a(n)=if(n<0,0,polsym(x^3-x-1,n)[n+1])
    
  • PARI
    A001608_list(n) = polsym(x^3-x-1,n) \\ Joerg Arndt, Mar 10 2019
    
  • Python
    A001608_list, a, b, c = [3, 0, 2], 3, 0, 2
    for _ in range(100):
        a, b, c = b, c, a+b
        A001608_list.append(c) # Chai Wah Wu, Jan 27 2015
    
  • Sage
    ((3-x^2)/(1-x^2-x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Mar 18 2019

Formula

G.f.: (3 - x^2)/(1 - x^2 - x^3). - Simon Plouffe in his 1992 dissertation
a(n) = r1^n + r2^n + r3^n where r1, r2, r3 are three roots of x^3-x-1=0.
a(n-1) + a(n) + a(n+1) = a(n+4), a(n) - a(n-1) = a(n-5). - Jon Perry, Jun 05 2003
From Gary W. Adamson, Feb 01 2004: (Start)
a(n) = trace(M^n) where M is the 3 X 3 matrix [0 1 0 / 0 0 1 / 1 1 0], the companion matrix of the characteristic polynomial of this sequence, P = X^3 - X - 1.
M^n * [3, 0, 2] = [a(n), a(n+1), a(n+2)]; e.g., M^7 * [3, 0, 2] = [7, 10, 12].
a(n) = 2*A000931(n+3) + A000931(n). (End)
a(n) = 3*p(n) - p(n-2) = 2*p(n) + p(n-3), with p(n) := A000931(n+3), n >= 0. - Wolfdieter Lang, Jun 21 2010
From Francesco Daddi, Aug 03 2011: (Start)
a(0) + a(1) + a(2) + ... + a(n) = a(n+5) - 2.
a(0) + a(2) + a(4) + ... + a(2*n) = a(2*n+3).
a(1) + a(3) + a(5) + ... + a(2*n+1) = a(2*n+4) - 2. (End)
From Francesco Daddi, Aug 04 2011: (Start)
a(0) + a(3) + a(6) + a(9) + ... + a(3*n) = a(3*n+2) + 1.
a(0) + a(5) + a(10) + a(15) + ... + a(5*n) = a(5*n+1)+3.
a(0) + a(7) + a(14) + a(21) + ... + a(7*n) = (a(7*n) + a(7*n+1) + 3)/2. (End)
a(n) = n*Sum_{k=1..floor(n/2)} binomial(k,n-2*k)/k, n > 0, a(0)=3. - Vladimir Kruchinin, Oct 21 2011
(a(n)^3)/2 + a(3n) - 3*a(n)*a(2n)/2 - 3 = 0. - Richard Turk, Apr 26 2017
2*a(4n) - 2*a(n) - 2*a(n)*a(3n) - a(2n)^2 + a(n)^2*a(2n) = 0. - Richard Turk, May 02 2017
a(n)^4 + 6*a(4n) - 4*a(3n)*a(n) - 3*a(2n)^2 - 12a(n) = 0. - Richard Turk, May 02 2017
a(n+5)^2 + a(n+1)^2 - a(n)^2 = a(2*(n+5)) + a(2*(n+1)) - a(2*n). - Aleksander Bosek, Mar 04 2019
From Aleksander Bosek, Mar 18 2019: (Start)
a(n+12) = a(n) + 2*a(n+4) + a(n+11);
a(n+16) = a(n) + 4*a(n+9) + a(n+13);
a(n+18) = a(n) + 2*a(n+6) + 5*a(n+12);
a(n+21) = a(n) + 2*a(n+12) + 6*a(n+14);
a(n+27) = a(n) + 3*a(n+9) + 4*a(n+22). (End)
a(n) = Sum_{j=0..floor((n-g)/(2*g))} 2*n/(n-2*(g-2)*j-(g-2)) * Hypergeometric2F1([-(n-2g*j-g)/2, -(2j+1)], [1], 1), g = 3 and n an odd integer. - Richard Turk, Oct 14 2019
E.g.f.: exp(r1*x) + exp(r2*x) + exp(r3*x), where r1, r2, r3 are three roots of x^3 - x - 1 = 0. - Fabian Pereyra, Nov 02 2024

Extensions

Additional comments from Mike Baker, Oct 11 2005
Definition edited by Chai Wah Wu, Jan 27 2015
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A018187 Restricted Perrin pseudoprimes.

Original entry on oeis.org

27664033, 46672291, 102690901, 130944133, 517697641, 545670533, 801123451, 855073301, 970355431, 1235188597, 3273820903, 3841324339, 3924969689, 4982970241, 5130186571, 5242624003, 6335800411, 7045248121
Offset: 1

Views

Author

Keywords

Comments

From Dana Jacobsen, Aug 03 2016: (Start)
These are the "minimal restricted" Perrin pseudoprimes. They meet conditions (4) and (5) from Adams and Shanks (1982), equivalent to condition (7) from Kurtz et al. (1986). That is, A(n) = 0 mod p and A(-n) = -1 mod p. Kurtz et al. call this the "minimal test", Wagon (1999) calls this the "strong Perrin test".
Further restrictions (Adams and Shanks, Arno / Grantham) lead to subsets of this sequence.
Kurtz et al. (1986) state that all acceptables (numbers where A(n) = 0 mod p and A(-n) = -1 mod p) <= 50*10^9 have S-type signatures. The first example where this does not hold is 16043638781521, which does not have an S-signature (nor an I- or Q-type signature).
The first example of a pseudoprime in this sequence that does not pass the Adams/Shanks signature test is 167385219121, with an S-signature but the wrong Jacobi symbol.
Some sources have conjectured the restricted Perrin pseudoprimes can be derived from the unrestricted Perrin pseudoprimes by checking if { M=[0,1,0; 0,0,1; 1,1,0]; Mod(M,n) == Mod(M,n)^n }. Counterexamples include 52437986833, 60518537641, 364573433665, and 4094040693601. (End)

References

  • S. Wagon, Mathematica in action, 2nd ed., 1999, pp. 402 - 403 and Mathematica notebook for Chapter 18 in attached CD-ROM

Crossrefs

Cf. A001608 (Perrin sequence), A013998 (unrestricted Perrin pseudoprimes).

Programs

  • PARI
    is(n) = { lift(trace(Mod([0,1,0; 0,0,1; 1,1,0],n)^n)) == 0 && lift(trace(Mod([0,1,0; 0,0,1; 1,0,-1],n)^n)) == n-1; }
    forcomposite(n=1,1e8,is(n)&&print(n)) \\ Dana Jacobsen, Aug 03 2016
  • Perl
    use ntheory ":all"; foroddcomposites { say if is_perrin_pseudoprime($,1); } 1e8; # _Dana Jacobsen, Aug 03 2016
    

A173656 Primes p such that p^2 divides P(p), where P = Perrin sequence A001608.

Original entry on oeis.org

521, 190699
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 15 2012

Keywords

Comments

It is not known if this sequence is infinite.
The squares are in A013998.
No other terms below 10^10. - Max Alekseyev, Aug 27 2023

Examples

			521 is in the sequence since its square 271441 is the factor of A001608(521).
		

Crossrefs

Programs

  • Mathematica
    lst = {}; a = 3; b = 0; c = 2; Do[P = b + a; If[PrimeQ[n] && Divisible[P, n^2], AppendTo[lst, n]]; a = b; b = c; c = P, {n, 3, 2*10^5}]; lst
    lst = {}; PowerMod2[mat_, n_, m_] := Mod[Fold[Mod[If[#2 == 1, #1.#1.mat, #1.#1], m] &, mat, Rest@IntegerDigits[n, 2]], m]; LinearRecurrence2[coeffs_, init_, n_, m_] := Mod[First@PowerMod2[Append[RotateRight /@ Most@IdentityMatrix@Length[coeffs], coeffs], n, m].init, m] /; n >= Length[coeffs]; Do[n = Power[p, 2]; If[PrimeQ[p] && LinearRecurrence2[{1, 1, 0}, {3, 0, 2}, n, n] == 0, AppendTo[lst, p]], {p, 1, 2*10^5, 2}]; lst
  • PARI
    /* Assuming b13998 containing second column of b013998.txt */
    A013998 = readvec(b13998);
    for (k=1,#A013998,if (issquare(A013998[k])==1,print(k," ",A013998[k])));
    /* Hugo Pfoertner, Sep 01 2017 */

A215339 a(n) = A001608(n) mod n.

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 2, 3, 7, 0, 5, 0, 9, 8, 10, 0, 14, 0, 17, 10, 2, 0, 13, 5, 15, 12, 23, 0, 20, 0, 26, 25, 19, 12, 2, 0, 21, 3, 5, 0, 33, 0, 2, 32, 2, 0, 21, 7, 42, 20, 41, 0, 23, 27, 3, 41, 2, 0, 34, 0, 33, 61, 26, 44, 27, 0, 53, 26, 31, 0, 34, 0, 2, 68, 21, 29, 18, 0, 5, 39, 43, 0, 71, 39, 2, 3, 10, 0, 83, 46, 2, 65, 49
Offset: 1

Views

Author

Joerg Arndt, Aug 16 2012

Keywords

Comments

a(n) = 0 for n=1, n a prime, or n a Perrin pseudoprime (A013998).

Crossrefs

Cf. A001608 (Perrin sequence), A013998 (Perrin pseudoprimes).

Programs

  • PARI
    M = [0, 1, 0; 0, 0, 1; 1, 1, 0];
    a(n)=lift( trace( Mod(M,n)^n ) );
    vector(66,n,a(n))

A075764 Schroeder pseudoprimes: Composites k that divide the k-th Schroeder number A001003(k-1).

Original entry on oeis.org

105, 261, 301, 693, 1605, 1755, 2151, 2905, 2907, 3393, 3875, 4641, 4833, 5005, 5655, 6279, 6913, 7161, 8883, 9405, 10899, 11025, 11289, 15687, 17199, 19203, 22275, 27387, 36855, 37791, 50007, 50463, 53493, 54891, 55209, 55755, 63327, 64337
Offset: 1

Views

Author

Benoit Cloitre, Oct 09 2002

Keywords

Examples

			105 is a term because A001003(105) = 15646506064359350392347086201481965698808674470977505246623827696393838448345 which is divisible by 105.
105 is a term because A001003(104) = 15646506064359350392347086201481965698808674470977505246623827696393838448345 which is divisible by 105.
		

Crossrefs

Intersection of A002808 and A075763.

Programs

  • Mathematica
    s = {}; k1 = k2 = 1; Do[k3 = ((6*n - 9)*k2 - (n - 3)*k1)/n; If[CompositeQ[n] && Divisible[k3, n], AppendTo[s, n]]; k1 = k2; k2 = k3, {n, 3, 10^5}]; s (* Amiram Eldar, Jun 28 2022 *)
  • PARI
    x1 = 1; x2 = 1; for (n = 3, 100000, x = (3*(2*n - 3)*x1 - (n - 3)*x2)/n; if (!isprime(n), if (!(x%n), print(n))); x2 = x1; x1 = x); \\ David Wasserman, Feb 23 2005

Extensions

More terms from David Wasserman, Feb 23 2005

A174625 Table T(n,k) with the coefficients of the polynomial P_n(x) = P_{n-1}(x) + x*P_{n-2}(x) + 1 in row n, by decreasing exponent of x.

Original entry on oeis.org

0, 2, 3, 2, 4, 5, 5, 2, 9, 6, 7, 14, 7, 2, 16, 20, 8, 9, 30, 27, 9, 2, 25, 50, 35, 10, 11, 55, 77, 44, 11, 2, 36, 105, 112, 54, 12, 13, 91, 182, 156, 65, 13, 2, 49, 196, 294, 210, 77, 14, 15, 140, 378, 450, 275, 90, 15, 2, 64, 336, 672, 660, 352, 104, 16, 17, 204, 714, 1122, 935, 442
Offset: 1

Views

Author

Vladimir Shevelev, Mar 24 2010

Keywords

Comments

The polynomials are defined by the recurrence starting with P_1(x)=0, P_2(x)=2.
The degree of the polynomial (row length minus 1) is A004526(n-2).
All coefficients of P_n are multiples of n iff n is prime.
Apparently a mirrored version of A157000. [R. J. Mathar, Nov 01 2010]

Examples

			The table starts
0; # 0
2; # 2
3; # 3
2,4; # 4+2*x
5,5; # 5+5*x
2,9,6; # 6+9*x+2*x^2
7,14,7; # 7+14*x+7*x^2
2,16,20,8; # 8+20*x+16*x^2+2*x^3
9,30,27,9; # 9+27*x+30*x^2+9*x^3
2,25,50,35,10; # 10+35*x+50*x^2+25*x^3+2*x^4
11,55,77,44,11; # 11+44*x+77*x^2+55*x^3+11*x^4
		

Crossrefs

Programs

  • Mathematica
    p[0]:=0 p[1]:=2; p[n_]:=p[n]=Expand[p[n-1] +x p[n-2]+1]; Flatten[{0, Map[Reverse[CoefficientList[#,x]]&, Table[Expand[p[n]], {n,0,20}]]}] (* Peter J. C. Moses, Aug 18 2013 *)

Extensions

Definition rephrased, sequence extended, keyword:tabf, examples added R. J. Mathar, Nov 01 2010

A225876 Composite n which divide s(n)+1, where s is the linear recurrence sequence s(n) = -s(n-1) + s(n-2) - s(n-3) + s(n-5) with initial terms (5, -1, 3, -7, 11).

Original entry on oeis.org

4, 14791044, 143014853, 253149265, 490434564, 600606332, 993861182, 3279563483
Offset: 1

Views

Author

Matt McIrvin, May 23 2013

Keywords

Comments

The pseudoprimes derived from the fifth-order linear recurrence A225984(n) are analogous to the Perrin pseudoprimes A013998, and the Lucas pseudoprimes A005845.
For prime p, A225984(p) == p - 1 (mod p). The pseudoprimes are composite numbers satisfying the same relation. 4 = 2^2; 14791044 = 2^2 * 3 * 19 * 29 * 2237; 143014853 = 907 * 157679.
Like the Perrin test, the modular sequence is periodic so simple pre-tests can be performed. Numbers divisible by 2, 3, 4, 5, 9, and 25 have periods 31, 11, 62, 24, 33, and 120 respectively. - Dana Jacobsen, Aug 29 2016
a(9) > 1.4*10^11. - Dana Jacobsen, Aug 29 2016

Examples

			A225984(4) = 11, and 11 == 3 (mod 4). Since 4 is composite, it is a pseudoprime with respect to A225984.
		

Programs

  • PARI
    N=10^10;
    default(primelimit, N);
    M = [0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1; 1, 0, -1, 1, -1];
    a(n)=lift( trace( Mod(M, n)^n ) );
    ta(n)=lift( trace( Mod(M, n) ) );
    { for (n=2, N,
        if ( isprime(n), next() );
        if ( a(n)==ta(n), print1(n, ", "); );
    ); }
    /* Matt McIrvin, after Joerg Arndt's program for A013998, May 23 2013 */

Extensions

Terms 4 through 7 found by Richard Holmes, added by Matt McIrvin, May 27 2013
a(8) from Dana Jacobsen, Aug 29 2016

A275612 Restricted Perrin pseudoprimes (Adams and Shanks definition).

Original entry on oeis.org

27664033, 46672291, 102690901, 130944133, 517697641, 545670533, 801123451, 855073301, 970355431, 1235188597, 3273820903, 3841324339, 3924969689, 4982970241, 5130186571, 5242624003, 6335800411, 7045248121, 7279379941, 7825642579
Offset: 1

Views

Author

Dana Jacobsen, Aug 03 2016

Keywords

Comments

These are composites which have an acceptable signature mod n for the Perrin sequence (A001608). See Adams and Shanks (1982), page 261.
They add additional conditions to the unrestricted Perrin test (A013998) and the minimal restricted test (A018187).
The quadratic form restriction for the I-signature (equation 29 in Adams and Shanks (1982)) is sometimes removed. No pseudoprimes are currently known that match the I-signature congruences. Adams and Shanks note that objections could be raised to its inclusion in the test, and Arno (1991) and Grantham (2000) both drop it.
Kurtz et al. (1986) call these "acceptable composites for the Perrin sequence". - N. J. A. Sloane, Jul 28 2019

Crossrefs

Cf. A001608 (Perrin sequence), A013998 (unrestricted Perrin pseudoprimes), A018187 (minimal restricted Perrin pseudoprimes)

Programs

  • PARI
    perrin2(n) = {
      my(M,L,S,j,A,B,C,D);
      M=Mod( [0,1,0; 0,0,1; 1,1,0], n)^n;
      L=Mod( [0,1,0; 0,0,1; 1,0,-1], n)^n;
      S=[ 3*L[3,2]-L[3,3],   3*L[2,2]-L[2,3],   3*L[1,2]-L[1,3], \
          3*M[3,1]+2*M[3,3], 3*M[1,1]+2*M[1,3], 3*M[2,1]+2*M[2,3] ];
      if (S[5] != 0 || S[2] != n-1,return(0));
      j = kronecker(-23,n);
      if (j == -1, B=S[3];A=1+3*B-B^2;C=3*B^2-2; if(S[1]==A && S[3]==B && S[4]==B && S[6] == C && B != 3 && B^3-B==1, return(1), return(0)));
      if (S[1] == 1 && S[3] == 3 && S[4] == 3 && S[6] == 2, return(1));
      if (j == 1 && S[1] == 0 && S[6] == n-1 && S[3] != S[4] && S[3]+S[4] == n-3 && (S[3]-S[4])^2 == Mod(-23,n), return(1));
      return(0);
    } \\ Dana Jacobsen, Aug 03 2016
  • Perl
    use ntheory ":all"; foroddcomposites { say if is_perrin_pseudoprime($,2); } 1e8; # _Dana Jacobsen, Aug 03 2016
    

A078512 Carmichael numbers that are unrestricted Perrin pseudoprimes.

Original entry on oeis.org

7045248121, 7279379941, 24306384961, 43234580143, 52437986833, 60518537641, 80829302401, 118805562613, 144377609419, 165321688501, 167385219121, 254302215553, 364573433665, 575687567521, 588909469501, 652270080001, 2152302898747, 4094040693601, 6287912246305
Offset: 1

Views

Author

Lekraj Beedassy, Jan 06 2003

Keywords

Comments

Intersection of A002997 and A013998.

Crossrefs

Extensions

More terms from Amiram Eldar, Jun 28 2019

A178375 The greatest common prime divisor of A000032(n)-1 and A001608(n), or 1 if no such divisor exists.

Original entry on oeis.org

2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 2, 23, 1, 5, 1, 3, 1, 29, 1, 31, 2, 7, 1, 3, 1, 37, 1, 7, 1, 41, 1, 43, 2, 1, 2, 47, 1, 7, 2, 1, 3, 53, 1, 7, 1, 1, 2, 59, 1, 61, 1, 1, 2, 7, 1, 67, 3, 1, 1, 71, 1, 73, 2, 1, 1, 5, 1, 79, 1, 7, 1, 83, 1, 2, 2, 7, 2, 89, 1
Offset: 2

Views

Author

Vladimir Shevelev, May 26 2010

Keywords

Comments

If n is prime, then n divides c(n). If n is composite and divides c(n) it is a pseudoprime to both the Lucas (Bruckman) and Perrin tests, which is the intersection of A005845 and A013998.
Conjecture: Records of the sequence are consecutive primes.

Crossrefs

Extensions

More terms from R. J. Mathar, Aug 08 2010
Showing 1-10 of 15 results. Next