cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003658 Fundamental discriminants of real quadratic fields; indices of primitive positive Dirichlet L-series.

Original entry on oeis.org

1, 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44, 53, 56, 57, 60, 61, 65, 69, 73, 76, 77, 85, 88, 89, 92, 93, 97, 101, 104, 105, 109, 113, 120, 124, 129, 133, 136, 137, 140, 141, 145, 149, 152, 156, 157, 161, 165, 168, 172, 173, 177, 181, 184, 185, 188, 193, 197
Offset: 1

Views

Author

Keywords

Comments

All the prime numbers in the set of positive fundamental discriminants are Pythagorean primes (A002144). - Paul Muljadi, Mar 28 2008
Record numbers of prime divisors (with multiplicity) are 1, 5, and 4*A002110(n) for n > 0. - Charles R Greathouse IV, Jan 21 2022

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519.
  • M. Pohst and Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989, page 432.
  • Paulo Ribenboim, Algebraic Numbers, Wiley, NY, 1972, p. 97.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Union of A039955 and 4*A230375.

Programs

  • Mathematica
    fundamentalDiscriminantQ[d_] := Module[{m, mod = Mod[d, 4]}, If[mod > 1, Return[False]]; If[mod == 1, Return[SquareFreeQ[d] && d != 1]]; m = d/4; Return[SquareFreeQ[m] && Mod[m, 4] > 1]; ]; Join[{1}, Select[Range[200], fundamentalDiscriminantQ]] (* Jean-François Alcover, Nov 02 2011, after Eric W. Weisstein *)
    Select[Range[200], NumberFieldDiscriminant@Sqrt[#] == # &]  (* Alonso del Arte, Apr 02 2014, based on Arkadiusz Wesolowski's program for A094612 *)
    max = 200; Drop[Select[Union[Table[Abs[MoebiusMu[n]] * n * 4^Boole[Not[Mod[n, 4] == 1]], {n, max}]], # < max &], 1] (* Alonso del Arte, Apr 02 2014 *)
  • PARI
    v=[]; for(n=1,500,if(isfundamental(n),v=concat(v,n))); v
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(n=1,lim\4, listput(v, if(n[1]%4==1, n[1], 4*n[1]))); forsquarefree(n=lim\4+1, lim\1, if(n[1]%4==1, listput(v,n[1]))); Set(v) \\ Charles R Greathouse IV, Jan 21 2022
    
  • Sage
    def is_fundamental(d):
        r = d % 4
        if r > 1 : return False
        if r == 1: return (d != 1) and is_squarefree(d)
        q = d // 4
        return is_squarefree(q) and (q % 4 > 1)
    [1] + [n for n in (1..200) if is_fundamental(n)] # Peter Luschny, Oct 15 2018

Formula

Squarefree numbers (multiplied by 4 if not == 1 (mod 4)).
a(n) ~ (Pi^2/3)*n. There are (3/Pi^2)*x + O(sqrt(x)) terms up to x. - Charles R Greathouse IV, Jan 21 2022

Extensions

More terms from Eric W. Weisstein and Jason Earls, Jun 19 2001

A014046 Second coordinate of fundamental unit of real quadratic field with discriminant A003658(n), n >= 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 1, 8, 2, 1, 10, 3, 1, 4, 40, 1, 5, 2, 3, 250, 39, 1, 1, 42, 106, 5, 3, 1138, 2, 1, 8, 25, 146, 2, 273, 2968, 15, 6, 298, 1, 16, 2, 5, 6, 4, 17, 1856, 1, 2, 531, 1, 9384, 97, 3588, 10, 7, 253970, 2, 72664, 7, 3, 6440, 5, 521904, 12, 1, 1, 13
Offset: 2

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

Comments

See A014000 for much more about this sequence. - N. J. A. Sloane, Jun 14 2013

References

  • H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519.

Crossrefs

Programs

  • PARI
    lista(nn) = { for (n=2, nn, if (isfundamental(n), nc = core(n); m = Mod (nc, 4); if ((m == 2) || (m == 3), d = 1); if ((m == 1), d = 4); b = 1; a = 0; while (a == 0, v = nc*b^2; if (issquare(v-d), a = sqrtint(v-d), if (issquare(v+d), a = sqrtint(v+d))); if (a == 0, b++; );); print1(b, ", ");););} \\ Michel Marcus, Sep 25 2018

Extensions

Offset corrected by Jianing Song, Mar 31 2019

A014077 Norm of fundamental unit of real quadratic field with discriminant A003658(n), n >= 2.

Original entry on oeis.org

-1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1
Offset: 2

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

Comments

See A014000 for details about the indexing.

References

  • H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519.

Crossrefs

Extensions

Offset corrected by Jianing Song, Mar 31 2019

A294176 Squarefree d such that the fundamental unit of Q(sqrt(d)) is larger than the fundamental unit of Q(sqrt(d)) for any smaller d.

Original entry on oeis.org

2, 3, 6, 7, 11, 14, 19, 22, 31, 43, 46, 67, 94, 127, 139, 151, 199, 211, 214, 331, 379, 454, 526, 571, 631, 739, 751, 886, 919, 991, 1291, 1366, 1699, 1726, 1999, 2011, 2311, 2326, 2566, 2671, 3019, 3259, 3691, 3931, 4174, 4846, 4951, 5119, 6211, 6379, 6406, 6451, 7606, 8254, 8779, 9619
Offset: 1

Views

Author

Alonso del Arte, Feb 10 2018

Keywords

Examples

			The fundamental unit of Z[sqrt(2)] is 1 + sqrt(2) = 2.414213562373...
The fundamental unit of Z[sqrt(3)] is 2 + sqrt(3) = 3.7320508..., which is larger than 2.414213562373...
Thus the sequence starts out 2, 3.
The fundamental unit of O_(Q(sqrt(5))) is 1/2 + sqrt(5)/2 = 1.618..., which is actually smaller than the previous units, so 5 is not in the sequence.
The next term in the sequence is 6, corresponding to 5 + 2 sqrt(6) = 9.8989794855663561963945681494...
		

Crossrefs

Programs

  • Mathematica
    k = 2; A294176 = {}; mx = 0; While[k < 1000, If[SquareFreeQ@ k && N[NumberFieldFundamentalUnits[Sqrt[k]], 16][[1]] > mx, mx = N[NumberFieldFundamentalUnits[Sqrt[k]], 16][[1]]; AppendTo[A294176, k]]; k++]; A294176 (* Robert G. Wilson v, Feb 11 2018 *)

Extensions

a(10) onward from Robert G. Wilson v, Feb 11 2018
Showing 1-4 of 4 results.