cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014076 Odd nonprimes.

Original entry on oeis.org

1, 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99, 105, 111, 115, 117, 119, 121, 123, 125, 129, 133, 135, 141, 143, 145, 147, 153, 155, 159, 161, 165, 169, 171, 175, 177, 183, 185, 187, 189, 195, 201, 203, 205, 207
Offset: 1

Views

Author

Keywords

Comments

Same as A071904 except for the initial term 1 (which is not composite).
Numbers n such that product of first n odd numbers divided by sum of the first n odd numbers is an integer : 1*3*5*...*(2*n - 1) / (1 + 3 + 5 + ... + (2*n - 1)) = c. - Ctibor O. Zizka, Jun 26 2010
Conjecture: There exist infinitely many pairs [a(n), a(n)+6] such that a(n)/3 and (a(n)+6)/3 are twin primes. - Eric Desbiaux, Sep 25 2014.
Odd numbers 2*n + 1 such that (2*n)!/(2*n + 1) is an integer. Odd terms of A056653. - Peter Bala, Jan 24 2017

Crossrefs

Cf. A002808, A005408; first differences: A067970, A196274; A047846.
Cf. A056653.

Programs

  • Haskell
    a014076 n = a014076_list !! (n-1)
    a014076_list = filter ((== 0) . a010051) a005408_list
    -- Reinhard Zumkeller, Sep 30 2011
    
  • Maple
    remove(isprime, [seq(i,i=1..1000,2)]); # Robert Israel, May 25 2016
    for n from 0 to 120 do
    if irem(factorial(2*n), 2*n+1) = 0 then print(2*n+1) end if;
    end do: # Peter Bala, Jan 24 2017
  • Mathematica
    Select[Range@210, !PrimeQ@ # && OddQ@ # &] (* Robert G. Wilson v, Sep 22 2008 *)
    Select[Range[1, 199, 2], PrimeOmega[#] != 1 &] (* Alonso del Arte, Nov 19 2012 *)
  • PARI
    is(n)=n%2 && !isprime(n) \\ Charles R Greathouse IV, Nov 24 2012
    
  • Python
    from sympy import primepi
    def A014076(n):
        if n == 1: return 1
        m, k = n-1, primepi(n) + n - 1 + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n - 1 + (k>>1)
        return m # Chai Wah Wu, Jul 31 2024

Formula

A000035(a(n))*(1 - A010051(a(n))) = 1. - Reinhard Zumkeller, Sep 30 2011
a(n) ~ 2n. - Charles R Greathouse IV, Jul 02 2013
(a(n+2)-1)/2 - pi(a(n+2)-1) = n. - Anthony Browne, May 25 2016. Proof from Robert Israel: This follows by induction on n. If f(n) = (a(n+2)-1)/2 - pi(a(n+2)-1), one can show f(n+1) - f(n) = 1 (there are three cases to consider, depending on primeness of a(n+2) + 2 and a(n+2) + 4).
Union of A091113 and A091236. - R. J. Mathar, Oct 02 2018