cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014083 Occurrences of '1111' in binary expansion of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Keywords

Examples

			a(63) = 3 as 63 = 111111 in binary and 1111 occurs three times (different occurrences may overlap). - _Antti Karttunen_, Jul 24 2017
		

Crossrefs

Programs

  • Maple
    See A014081.
  • Mathematica
    Table[SequenceCount[IntegerDigits[n,2],{1,1,1,1},Overlaps->True],{n,0,100}] (* The program uses the SequenceCount function from Mathematica version 10 *) (* Harvey P. Dale, Sep 25 2015 *)
  • PARI
    u1111(n)=my(v=binary(n)); sum(k=1,#v-3, v[k]&&v[k+1]&&v[k+2]&&v[k+3])
    
  • PARI
    a(n)=my(s,t); while(n, n>>=valuation(n,2); t=valuation(n+1,2); s+=max(t-3, 0); n>>=t); s \\ Charles R Greathouse IV, Jan 21 2016

Formula

a(2n) = a(n), a(2n+1) = a(n) + [n congruent to 7 mod 8]. - Ralf Stephan, Aug 21 2003
G.f.: 1/(1-x) * sum(k>=0, t^15(1-t)/(1-t^16), t=x^2^k). - Ralf Stephan, Sep 08 2003
a(n) <= log_2(n+1) - 3 for n >= 7. - Charles R Greathouse IV, Jan 21 2016

Extensions

Term a(0)=0 prepended and more terms from Antti Karttunen, Jul 24 2017