cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014092 Numbers that are not the sum of 2 primes.

Original entry on oeis.org

1, 2, 3, 11, 17, 23, 27, 29, 35, 37, 41, 47, 51, 53, 57, 59, 65, 67, 71, 77, 79, 83, 87, 89, 93, 95, 97, 101, 107, 113, 117, 119, 121, 123, 125, 127, 131, 135, 137, 143, 145, 147, 149, 155, 157, 161, 163, 167, 171, 173, 177, 179, 185, 187, 189, 191, 197, 203, 205, 207, 209
Offset: 1

Views

Author

Keywords

Comments

Suggested by the Goldbach conjecture that every even number larger than 2 is the sum of 2 primes.
Since (if we believe the Goldbach conjecture) all the entries > 2 in this sequence are odd, they are equal to 2 + an odd composite number (or 1).
Otherwise said, the sequence consists of 2 and odd numbers k such that k-2 is not prime. In particular there is no element from A006512, greater of a twin prime pair. - M. F. Hasler, Sep 18 2012
Values of k such that A061358(k) = 0. - Emeric Deutsch, Apr 03 2006
Values of k such that A073610(k) = 0. - Graeme McRae, Jul 18 2006

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Section 2.8 (for Goldbach conjecture).

Crossrefs

Cf. A010051, A000040, A051035 (composites).
Equivalent sequence for prime powers: A071331.
Numbers that can be expressed as the sum of two primes in k ways for k=0..10: this sequence (k=0), A067187 (k=1), A067188 (k=2), A067189 (k=3), A067190 (k=4), A067191 (k=5), A066722 (k=6), A352229 (k=7), A352230 (k=8), A352231 (k=9), A352233 (k=10).

Programs

  • Haskell
    a014092 n = a014092_list !! (n-1)
    a014092_list = filter (\x ->
       all ((== 0) . a010051) $ map (x -) $ takeWhile (< x) a000040_list) [1..]
    -- Reinhard Zumkeller, Sep 28 2011
    
  • Maple
    g:=sum(sum(x^(ithprime(i)+ithprime(j)),i=1..j),j=1..50): gser:=series(g,x=0,230): a:=proc(n) if coeff(gser,x^n)=0 then n else fi end: seq(a(n),n=1..225); # Emeric Deutsch, Apr 03 2006
  • Mathematica
    s1falsifiziertQ[s_]:= Module[{ip=IntegerPartitions[s, {2}], widerlegt=False},Do[If[PrimeQ[ip[[i,1]] ] ~And~ PrimeQ[ip[[i,2]] ], widerlegt = True; Break[]],{i,1,Length[ip]}];widerlegt]; Select[Range[250],s1falsifiziertQ[ # ]==False&] (* Michael Taktikos, Dec 30 2007 *)
    Join[{1,2},Select[Range[3,300,2],!PrimeQ[#-2]&]] (* Zak Seidov, Nov 27 2010 *)
    Select[Range[250],Count[IntegerPartitions[#,{2}],?(AllTrue[#,PrimeQ]&)]==0&] (* _Harvey P. Dale, Jun 08 2022 *)
  • PARI
    isA014092(n)=local(p,i) ; i=1 ; p=prime(i); while(pA014092(a), print(n," ",a); n++)) \\ R. J. Mathar, Aug 20 2006
    
  • Python
    from sympy import prime, isprime
    def ok(n):
        i=1
        x=prime(i)
        while xIndranil Ghosh, Apr 29 2017

Formula

Odd composite numbers + 2 (essentially A014076(n) + 2 ).
Equals {2} union A005408 \ A052147, i.e., essentially the complement of A052147 (or rather A048974) within the odd numbers A005408. - M. F. Hasler, Sep 18 2012