cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014113 a(n) = a(n-1) + 2*a(n-2) with a(0)=0, a(1)=2.

Original entry on oeis.org

0, 2, 2, 6, 10, 22, 42, 86, 170, 342, 682, 1366, 2730, 5462, 10922, 21846, 43690, 87382, 174762, 349526, 699050, 1398102, 2796202, 5592406, 11184810, 22369622, 44739242, 89478486, 178956970, 357913942, 715827882, 1431655766, 2863311530, 5726623062, 11453246122
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a014113 n = a014113_list !! n
    a014113_list = 0 : 2 : zipWith (+)
                           (map (* 2) a014113_list) (tail a014113_list)
    -- Reinhard Zumkeller, Jul 20 2013
  • Mathematica
    LinearRecurrence[{1,2},{0,2},50] (* Vincenzo Librandi, Feb 19 2012 *)

Formula

a(0) = 0 and if n>=1, a(n) = 2^n - a(n-1).
a(n) = A078008(n+1). - Reinhard Zumkeller, Jun 10 2005
a(n) = 2*A001045(n). - Benoit Jubin, Dec 01 2011
a(n) = (2^(n+1) - 2*(-1)^n)/3. - Ralf Stephan, Jul 18 2013
G.f.: 2*x/(1+x)/(1-2*x). - Colin Barker, Feb 19 2012
G.f.: 1/Q(0) -1, where Q(k) = 1 + 2*x^2 - (2*k+3)*x + x*(2*k+1 - 2*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
Consider a Pascal-like triangle T(n,k) in which T(n,0) = T(n,n) = 0 if n even, 1 if n odd, and each interior entry T(n,k) is the sum of the two entries "above" it: T(n,k) = T(n-1,k-1) + T(n-1,k) for 0 < k < n. Then, a(n) is the sum of the entries in the n-th row of T(n,k). - Greg Dresden, May 24 2024