cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014140 Apply partial sum operator twice to Catalan numbers.

Original entry on oeis.org

1, 3, 7, 16, 39, 104, 301, 927, 2983, 9901, 33615, 116115, 406627, 1440039, 5147891, 18550588, 67310955, 245716112, 901759969, 3325067016, 12312494483, 45766188970, 170702447097, 638698318874, 2396598337975, 9016444758528, 34003644251233, 128524394659942, 486793096819011
Offset: 0

Views

Author

Keywords

Comments

From Alexander Adamchuk, Jul 04 2006: (Start)
p divides a(p-1) and a((p-3)/2) for primes in A002476.
p divides a((p-5)/2) for primes in A068228.
p^2 divides a(p^2-1) for all primes p > 3. (End)
Equals triangle A106270(unsigned) * [1, 2, 3, ...]. - Gary W. Adamson, Apr 02 2009

Crossrefs

Partial sums of A014137.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<0, [0$2], (q->(f->
          [f[2]+q, q]+f)(b(n-1)))(binomial(2*n, n)/(n+1)))
        end:
    a:= n-> b(n)[1]:
    seq(a(n), n=0..28);  # Alois P. Heinz, Feb 13 2022
  • Mathematica
    Table[Sum[Sum[(2k)!/k!/(k+1)!,{k,0,m}],{m,0,n}],{n,0,50}] Table[Sum[(n+1-k)*(2k)!/k!/(k+1)!,{k,0,n}],{n,0,50}] (* Alexander Adamchuk, Jul 04 2006 *)
  • PARI
    sm(v)={my(s=vector(#v)); s[1]=v[1]; for(n=2, #v, s[n]=v[n]+s[n-1]); s; }
    C(n)=binomial(2*n, n)/(n+1);
    sm(sm(vector(66, n, C(n-1))))
    /* Joerg Arndt, May 04 2013 */

Formula

1*C(n) + 2*C(n-1) + 3*C(n-2) + ... + (n+1-k)*C(k) + ... + n*C(1) + (n+1)*C(0), where C(k) = (2k)!/(k!*(k+1)!) is Catalan Number A000108(k). - Alexander Adamchuk, Jul 04 2006
From Alexander Adamchuk, Jul 04 2006: (Start)
a(n) = Sum_{m=0..n} Sum_{k=0..m} (2k)!/(k!*(k+1)!).
a(n) = Sum_{k=0..n} (n+1-k)*(2k)!/(k!*(k+1)!). (End)
G.f.: 1/(1-x)^2*(1-sqrt(1-4*x))/(2*x). - Vladimir Kruchinin, Oct 14 2016
a(n) = Sum_{k=0..n} binomial(n+2,k+2)*r(k), where r(k) are the Riordan numbers A005043. - Vladimir Kruchinin, Oct 14 2016
a(n) ~ 2^(2*n+4) / (9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2016

Extensions

More terms from Alexander Adamchuk, Jul 04 2006