A014140 Apply partial sum operator twice to Catalan numbers.
1, 3, 7, 16, 39, 104, 301, 927, 2983, 9901, 33615, 116115, 406627, 1440039, 5147891, 18550588, 67310955, 245716112, 901759969, 3325067016, 12312494483, 45766188970, 170702447097, 638698318874, 2396598337975, 9016444758528, 34003644251233, 128524394659942, 486793096819011
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Maple
b:= proc(n) option remember; `if`(n<0, [0$2], (q->(f-> [f[2]+q, q]+f)(b(n-1)))(binomial(2*n, n)/(n+1))) end: a:= n-> b(n)[1]: seq(a(n), n=0..28); # Alois P. Heinz, Feb 13 2022
-
Mathematica
Table[Sum[Sum[(2k)!/k!/(k+1)!,{k,0,m}],{m,0,n}],{n,0,50}] Table[Sum[(n+1-k)*(2k)!/k!/(k+1)!,{k,0,n}],{n,0,50}] (* Alexander Adamchuk, Jul 04 2006 *)
-
PARI
sm(v)={my(s=vector(#v)); s[1]=v[1]; for(n=2, #v, s[n]=v[n]+s[n-1]); s; } C(n)=binomial(2*n, n)/(n+1); sm(sm(vector(66, n, C(n-1)))) /* Joerg Arndt, May 04 2013 */
Formula
1*C(n) + 2*C(n-1) + 3*C(n-2) + ... + (n+1-k)*C(k) + ... + n*C(1) + (n+1)*C(0), where C(k) = (2k)!/(k!*(k+1)!) is Catalan Number A000108(k). - Alexander Adamchuk, Jul 04 2006
From Alexander Adamchuk, Jul 04 2006: (Start)
a(n) = Sum_{m=0..n} Sum_{k=0..m} (2k)!/(k!*(k+1)!).
a(n) = Sum_{k=0..n} (n+1-k)*(2k)!/(k!*(k+1)!). (End)
G.f.: 1/(1-x)^2*(1-sqrt(1-4*x))/(2*x). - Vladimir Kruchinin, Oct 14 2016
a(n) = Sum_{k=0..n} binomial(n+2,k+2)*r(k), where r(k) are the Riordan numbers A005043. - Vladimir Kruchinin, Oct 14 2016
a(n) ~ 2^(2*n+4) / (9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2016
Extensions
More terms from Alexander Adamchuk, Jul 04 2006
Comments