A038589 Sizes of successive clusters in hexagonal lattice A_2 centered at lattice point.
1, 7, 7, 13, 19, 19, 19, 31, 31, 37, 37, 37, 43, 55, 55, 55, 61, 61, 61, 73, 73, 85, 85, 85, 85, 91, 91, 97, 109, 109, 109, 121, 121, 121, 121, 121, 127, 139, 139, 151, 151, 151, 151, 163, 163, 163, 163, 163, 169, 187, 187, 187, 199, 199, 199
Offset: 0
Examples
1 + 7*x + 7*x^2 + 13*x^3 + 19*x^4 + 19*x^5 + 19*x^6 + 31*x^7 + 31*x^8 + 37*x^9 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Benoit Cloitre, On the circle and divisor problems.
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
Programs
-
Mathematica
a[n_] := 1 + Sum[ Length[ {ToRules[ Reduce[ x^2 + x*y + y^2 == k, {x, y}, Integers] ]}], {k, 1, n}]; Table[a[n], {n, 0, 54}] (* Jean-François Alcover, Feb 23 2012, after Neven Juric *)
-
PARI
a(n)=1+6*sum(k=0,n\3,(n\(3*k+1))-(n\(3*k+2)))
Formula
Partial sums of A004016.
Expansion of a(x) / (1 - x) in powers of x where a() is a cubic AGM theta function (cf. A004016). - Michael Somos, Aug 21 2012
Equals 1 + A014201(n). - Neven Juric, May 10 2010
a(n) = 1 + 6*Sum_{k=1..n/3} floor(n/(3k+1)) - floor(n/(3k+2)). a(n) is asymptotic to 2*(Pi/sqrt(3))*n. Conjecture: a(n) = 2*(Pi/sqrt(3))*n + O(n^(1/4 + epsilon)) as for the Gauss circle or Dirichlet divisor problems. - Benoit Cloitre, Oct 27 2012
a(n) = A014201(n) + 1. - Hugo Pfoertner, Nov 09 2023
Comments