A014209 a(n) = n^2 + 3*n - 1.
-1, 3, 9, 17, 27, 39, 53, 69, 87, 107, 129, 153, 179, 207, 237, 269, 303, 339, 377, 417, 459, 503, 549, 597, 647, 699, 753, 809, 867, 927, 989, 1053, 1119, 1187, 1257, 1329, 1403, 1479, 1557, 1637, 1719, 1803, 1889, 1977, 2067, 2159, 2253, 2349, 2447, 2547, 2649
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wikipedia, Centered Hexagonal Numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[n^2+3*n-1, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Oct 08 2009 *) CoefficientList[Series[(- 1 + 6 x - 3 x^2)/(1 - x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 15 2013 *)
-
PARI
a(n)=n^2+3*n-1 \\ Charles R Greathouse IV, Sep 24 2015
Formula
For n > 0: a(n) = A176271(n+1,n). - Reinhard Zumkeller, Apr 13 2010
a(n) = a(n-1) + 2*n + 2, with n > 0, a(0)=-1. - Vincenzo Librandi, Nov 20 2010
From Colin Barker, Feb 12 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (-1+6*x-3*x^2)/(1-x)^3. (End)
Sum_{n>=0} 1/a(n) = 1/3 + tan(sqrt(13)*Pi/2)*Pi/sqrt(13). - Amiram Eldar, Jan 08 2023
E.g.f.: exp(x)*(-1 + 4*x + x^2). - Elmo R. Oliveira, Oct 31 2024
Comments