cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014209 a(n) = n^2 + 3*n - 1.

Original entry on oeis.org

-1, 3, 9, 17, 27, 39, 53, 69, 87, 107, 129, 153, 179, 207, 237, 269, 303, 339, 377, 417, 459, 503, 549, 597, 647, 699, 753, 809, 867, 927, 989, 1053, 1119, 1187, 1257, 1329, 1403, 1479, 1557, 1637, 1719, 1803, 1889, 1977, 2067, 2159, 2253, 2349, 2447, 2547, 2649
Offset: 0

Views

Author

Keywords

Comments

Difference between n-th centered hexagonal number and (2*n)^2. - Alonso del Arte, Jul 06 2004
Given the roots to n^2 + 3*n - 1, a = -3.302775..., b = 0.302775...; then a(n) = (n + 3 + a)*(n + 3 + b). Example: a(3) = 17 = (6 - 3.302...)*(6 + 0.302775). - Gary W. Adamson, Jul 29 2009
a(n-1) = n*(n+1) - 3, with a(-1) = -3, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 13 for b = 2*n + 1. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
Numbers m >= -1 such that 4*m + 13 is a square. - Bruce J. Nicholson, Jul 17 2017

Crossrefs

Programs

Formula

For n > 0: a(n) = A176271(n+1,n). - Reinhard Zumkeller, Apr 13 2010
a(n) = a(n-1) + 2*n + 2, with n > 0, a(0)=-1. - Vincenzo Librandi, Nov 20 2010
From Colin Barker, Feb 12 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (-1+6*x-3*x^2)/(1-x)^3. (End)
Sum_{n>=0} 1/a(n) = 1/3 + tan(sqrt(13)*Pi/2)*Pi/sqrt(13). - Amiram Eldar, Jan 08 2023
E.g.f.: exp(x)*(-1 + 4*x + x^2). - Elmo R. Oliveira, Oct 31 2024