cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014224 Numbers k such that 3^k - 2 is prime.

Original entry on oeis.org

2, 4, 5, 6, 9, 22, 37, 41, 90, 102, 105, 317, 520, 541, 561, 648, 780, 786, 957, 1353, 2224, 2521, 6184, 7989, 8890, 19217, 20746, 31722, 37056, 69581, 195430, 225922, 506233, 761457, 1180181
Offset: 1

Views

Author

Keywords

Comments

If n is of the form 4k + 3 then 3^n - 2 is composite, because 3^n - 2 = (3^4)^k*3^3 - 2 == 0 (mod 5). So there is no term of the form 4k + 3. If Q is a perfect number such that gcd(3(3^a(n) - 2), Q) = 1 then x = 3^(a(n) - 1)*(3^a(n) - 2)*Q is a solution of the equation sigma(x) = 3x + Q. See comment lines of the sequences A058959 and A171271. - M. F. Hasler and Farideh Firoozbakht, Dec 07 2009
For all numbers n in this sequence, 3^(n-1)*(3^n-2) is a 2-hyperperfect number, cf. A007593, and no other 2-hyperperfect number seems to be known. - Farideh Firoozbakht and M. F. Hasler, Apr 25 2012
225922 is the last term in the sequence up to 500000. All n <= 500000 have been tested with the Miller-Rabin PRP test and/or PFGW. - Ryan Propper, Aug 18 2013
For n <= 506300 there is one additional term, 506233, a probable prime as tested by PFGW. - Ryan Propper, Sep 03 2013
a(35) > 10^6. - Ryan Propper, Jul 22 2015

References

  • Daniel Minoli, Sufficient Forms For Generalized Perfect Numbers, Ann. Fac. Sciences, Univ. Nation. Zaire, Section Mathem; Vol. 4, No. 2, Dec 1978, pp. 277-302. [From Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009]
  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (pp. 114-134) [From Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009]
  • Daniel Minoli and W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing. [From Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009]

Crossrefs

3^n - 2 = A058481(n).

Programs

Extensions

Corrected by Andrey V. Kulsha, Feb 04 2001
a(26) = 19217, a(27) = 20746 from Ryan Propper, May 11 2007
a(28) = 31722 from Henri Lifchitz, Oct 2002
a(29) = 37056 from Henri Lifchitz, Oct 2004
a(30) = 69581 from Henri Lifchitz, Jan 2005
a(31) = 195430 from Theodore Burton, Feb 2007
a(32) = 225922 from Ryan Propper, Aug 18 2013
a(33) = 506233 from Ryan Propper, Sep 02 2013
a(34) = 761457 from Ryan Propper, Jul 22 2015
a(35) = 1180181 from Jorge Coveiro, May 22 2020