A014233 Smallest odd number for which Miller-Rabin primality test on bases <= n-th prime does not reveal compositeness.
2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 341550071728321, 3825123056546413051, 3825123056546413051, 3825123056546413051, 318665857834031151167461, 3317044064679887385961981
Offset: 1
References
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 157.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 98.
Links
- Martin R. Albrecht, Jake Massimo, Kenneth G. Paterson, Juraj Somorovsky, Prime and Prejudice: Primality Testing Under Adversarial Conditions, Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, 281-298.
- Joerg Arndt, Matters Computational (The Fxtbook), section 39.10, pp. 786-792.
- Paul D. Beale, A new class of scalable parallel pseudorandom number generators based on Pohlig-Hellman exponentiation ciphers, arXiv:1411.2484 [physics.comp-ph], 2014-2015.
- Paul D. Beale, Jetanat Datephanyawat, Class of scalable parallel and vectorizable pseudorandom number generators based on non-cryptographic RSA exponentiation ciphers, arXiv:1811.11629 [cs.CR], 2018.
- C. Caldwell, Strong probable-primality and a practical test.
- G. Jaeschke, On strong pseudoprimes to several bases, Mathematics of Computation, 61 (1993), 915-926.
- Yupeng Jiang, Yingpu Deng, Strong pseudoprimes to the first 9 prime bases, arXiv:1207.0063v1 [math.NT], June 30, 2012.
- A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996; see section 4.2.3, Miller-Rabin test.
- C. Pomerance, J. L. Selfridge and S. S. Wagstaff, Jr., The pseudoprimes to 25.10^9, Mathematics of Computation 35 (1980), pp. 1003-1026.
- Eric Bach, Explicit bounds for primality testing and related problems, Mathematics of Computation 55 (1990), pp. 355-380.
- F. Raynal, Miller-Rabin's Primality Test
- K. Reinhardt, Miller-Rabin Primality Test for odd n [broken link]
- Jonathan P. Sorenson, Jonathan Webster, Strong Pseudoprimes to Twelve Prime Bases, arXiv:1509.00864 [math.NT], 2015.
- S. Wagon, Primality testing, Math. Intellig., 8 (No. 3, 1986), 58-61.
- Eric Weisstein's World of Mathematics, Strong Pseudoprime
- Eric Weisstein's World of Mathematics, Rabin-Miller Strong Pseudoprime Test
- Wikipedia, Miller-Rabin primality test
- Zhenxiang Zhang and Min Tang, Finding strong pseudoprimes to several bases. II, Mathematics of Computation 72 (2003), pp. 2085-2097.
- Index entries for sequences related to pseudoprimes
Formula
Bach shows that, on the ERH, a(n) >> exp(sqrt(1/2 * x log x)). - Charles R Greathouse IV, May 17 2011
Extensions
Minor edits from N. J. A. Sloane, Jun 20 2009
a(9)-a(11) from Charles R Greathouse IV, Aug 14 2010
a(12)-a(13) from the Sorenson/Webster reference, Joerg Arndt, Sep 04 2015
Comments