A141768
Odd numbers with increasing numbers of bases to which they are strong pseudoprimes.
Original entry on oeis.org
9, 25, 49, 91, 341, 481, 703, 1541, 1891, 2701, 5461, 6533, 8911, 12403, 18721, 29341, 31621, 38503, 79003, 88831, 146611, 188191, 218791, 269011, 286903, 385003, 497503, 597871, 736291, 765703, 954271, 1024651, 1056331, 1152271, 1314631, 1869211, 2741311
Offset: 1
25 is a 1-, 7-, 18- and 24-strong pseudoprime and no odd number less than 25 has four or more bases to which it is a strong pseudoprime.
- Charles R Greathouse IV, Table of n, a(n) for n = 1..5476
- W. R. Alford, A. Granville, and C. Pomerance (1994). "On the difficulty of finding reliable witnesses". Lecture Notes in Computer Science 877, 1994, pp. 1-16.
- Shyam Narayanan, Improving the Speed and Accuracy of the Miller-Rabin Primality Test
- Shyam Narayanan, Improving the Accuracy of Primality Tests by Enhancing the Miller-Rabin Theorem (2014)
- Michael O. Rabin, Probabilistic algorithm for testing primality, Journal of Number Theory 12:1 (1980), pp. 128-138.
- Index entries for sequences related to pseudoprimes
-
star(n)={n--;n>>valuation(n,2)};
bases(n)=my(f=factor(n)[,1], nu=valuation(f[1]-1, 2), nn = star(n));for(i=2,#f,nu = min(nu, valuation(f[i] - 1, 2)););(1 + (2^(#f * nu) - 1) / (2^#f - 1)) * prod(i=1, #f, gcd(nn, star(f[i])));
r=0;forstep(n=9,1e8,2,if(isprime(n),next);t=bases(n);if(t>r,r=t;print1(n",")))
A072276
Strong pseudoprimes to bases 2 and 3.
Original entry on oeis.org
1373653, 1530787, 1987021, 2284453, 3116107, 5173601, 6787327, 11541307, 13694761, 15978007, 16070429, 16879501, 25326001, 27509653, 27664033, 28527049, 54029741, 61832377, 66096253, 74927161, 80375707, 101649241
Offset: 1
- Don Reble, Table of n, a(n) for n = 1..10000
- Joerg Arndt, Matters Computational (The Fxtbook), section 39.10, pp. 786-792
- D. Bleichenbacher, Thesis and strong pseudoprimes to 2 and 3 up to 10^16
- Washington Bomfim, Table of n, a(n) for n=1..1499371 [a large file]
- Jan Feitsma and William Galway, Tables of pseudoprimes and related data
- A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, section 4.2.3, Miller-Rabin test.
- Eric Weisstein's World of Mathematics, Rabin-Miller test
- Index entries for sequences related to pseudoprimes
-
nmax = 10^8; sppQ[n_?EvenQ, ] := False; sppQ[n?PrimeQ, ] := False; sppQ[n, b_] := (s = IntegerExponent[n - 1, 2]; d = (n - 1)/2^s; If[ PowerMod[b, d, n] == 1, Return[True], Do[ If[ PowerMod[b, d*2^r, n] == n-1, Return[True]], {r, 0, s-1}]]); A072276 = {}; n = 1; While[n < nmax, n = n+2; If[sppQ[n, 2] && sppQ[n, 3] , Print[n]; AppendTo[ A072276, n]]]; A072276 (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *)
A006945
Smallest odd composite number that requires n Miller-Rabin primality tests.
Original entry on oeis.org
9, 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 341550071728321, 3825123056546413051, 3825123056546413051, 3825123056546413051, 318665857834031151167461, 3317044064679887385961981
Offset: 1
2047=23*89. 1373653 = 829*1657. 25326001 = 11251*2251. 3215031751 = 151*751*28351. 2152302898747 = 6763*10627*29947.
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 157.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 98.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Joerg Arndt, Matters Computational (The Fxtbook)
- Eric Bach, Explicit bounds for primality testing and related problems, Mathematics of Computation 55 (1990), pp. 355-380.
- G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp., 61 (1993), 915-926.
- Yupeng Jiang, Yingpu Deng, Strong pseudoprimes to the first 9 prime bases, arXiv:1207.0063v1 [math.NT], June 30, 2012.
- C. Pomerance, J. L. Selfridge and S. S. Wagstaff, Jr., The pseudoprimes to 25.10^9, Mathematics of Computation 35 (1980), pp. 1003-1026.
- S. Wagon, Primality testing, Math. Intellig., 8 (No. 3, 1986), 58-61.
- Zhenxiang Zhang and Min Tang, Finding strong pseudoprimes to several bases. II, Mathematics of Computation 72 (2003), pp. 2085-2097.
- Index entries for sequences related to pseudoprimes
Extended and description corrected by
Jud McCranie Feb 15 1997.
A329759
Odd composite numbers k for which the number of witnesses for strong pseudoprimality of k equals phi(k)/4, where phi is the Euler totient function (A000010).
Original entry on oeis.org
15, 91, 703, 1891, 8911, 12403, 38503, 79003, 88831, 146611, 188191, 218791, 269011, 286903, 385003, 497503, 597871, 736291, 765703, 954271, 1024651, 1056331, 1152271, 1314631, 1869211, 2741311, 3270403, 3913003, 4255903, 4686391, 5292631, 5481451, 6186403, 6969511
Offset: 1
15 is in the sequence since out of the phi(15) = 8 numbers 1 <= b < 15 that are coprime to 15, i.e., b = 1, 2, 4, 7, 8, 11, 13, and 14, 8/4 = 2 are witnesses for the strong pseudoprimality of 15: 1 and 14.
- Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, 2nd ed., Springer, 2005, Theorem 3.5.4., p. 136.
-
o[n_] := (n - 1)/2^IntegerExponent[n - 1, 2];
a[n_?PrimeQ] := n - 1; a[n_] := Module[{p = FactorInteger[n][[;; , 1]]}, om = Length[p]; Product[GCD[o[n], o[p[[k]]]], {k, 1, om}] * (1 + (2^(om * Min[IntegerExponent[#, 2] & /@ (p - 1)]) - 1)/(2^om - 1))];
aQ[n_] := CompositeQ[n] && a[n] == EulerPhi[n]/4; s = Select[Range[3, 10^5, 2], aQ]
Showing 1-4 of 4 results.
Comments