cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A141768 Odd numbers with increasing numbers of bases to which they are strong pseudoprimes.

Original entry on oeis.org

9, 25, 49, 91, 341, 481, 703, 1541, 1891, 2701, 5461, 6533, 8911, 12403, 18721, 29341, 31621, 38503, 79003, 88831, 146611, 188191, 218791, 269011, 286903, 385003, 497503, 597871, 736291, 765703, 954271, 1024651, 1056331, 1152271, 1314631, 1869211, 2741311
Offset: 1

Views

Author

Keywords

Comments

These numbers are the worst cases for the Rabin-Miller probable-prime test.
Alford, Granville, & Pomerance show that this sequence is infinite.
The sequence is unchanged whether one, both, or neither of 1 and n-1 are included as bases.

Examples

			25 is a 1-, 7-, 18- and 24-strong pseudoprime and no odd number less than 25 has four or more bases to which it is a strong pseudoprime.
		

Crossrefs

Programs

  • PARI
    star(n)={n--;n>>valuation(n,2)};
    bases(n)=my(f=factor(n)[,1], nu=valuation(f[1]-1, 2), nn = star(n));for(i=2,#f,nu = min(nu, valuation(f[i] - 1, 2)););(1 + (2^(#f * nu) - 1) / (2^#f - 1)) * prod(i=1, #f, gcd(nn, star(f[i])));
    r=0;forstep(n=9,1e8,2,if(isprime(n),next);t=bases(n);if(t>r,r=t;print1(n",")))

Extensions

Edited by Charles R Greathouse IV, Jul 23 2010

A072276 Strong pseudoprimes to bases 2 and 3.

Original entry on oeis.org

1373653, 1530787, 1987021, 2284453, 3116107, 5173601, 6787327, 11541307, 13694761, 15978007, 16070429, 16879501, 25326001, 27509653, 27664033, 28527049, 54029741, 61832377, 66096253, 74927161, 80375707, 101649241
Offset: 1

Views

Author

Francois R. Grieu, Jul 09 2002

Keywords

Comments

Composites that pass the Miller-Rabin test for bases 2 and 3. The intersection of A001262 (strong pseudoprimes to base 2) and A020229 (strong pseudoprimes to base 3).
The Washington Bomfim link references a table with all terms up to 2^64. Data from Jan Feitsma and William Galway, see link below, permitted an easy determination of these terms. I tested the Mathematica function PrimeQ[n] with those numbers to verify that it is correct for all n < 2^64. - Washington Bomfim, May 13 2012

Crossrefs

Programs

A006945 Smallest odd composite number that requires n Miller-Rabin primality tests.

Original entry on oeis.org

9, 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 341550071728321, 3825123056546413051, 3825123056546413051, 3825123056546413051, 318665857834031151167461, 3317044064679887385961981
Offset: 1

Views

Author

Keywords

Comments

The tests are performed on sequential prime numbers starting with 2. Note that some terms are repeated.
Same as A014233 except for the first term.

Examples

			2047=23*89. 1373653 = 829*1657. 25326001 = 11251*2251. 3215031751 = 151*751*28351. 2152302898747 = 6763*10627*29947.
		

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 157.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 98.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Bach shows that, on the ERH, a(n) >> exp(sqrt(1/2 * x log x)). [Charles R Greathouse IV, May 17 2011]

Extensions

Extended and description corrected by Jud McCranie Feb 15 1997.
a(10)-a(12) from Charles R Greathouse IV, Aug 14 2010
a(13)-a(14) copied from A014233 by Max Alekseyev, Feb 15 2017

A329759 Odd composite numbers k for which the number of witnesses for strong pseudoprimality of k equals phi(k)/4, where phi is the Euler totient function (A000010).

Original entry on oeis.org

15, 91, 703, 1891, 8911, 12403, 38503, 79003, 88831, 146611, 188191, 218791, 269011, 286903, 385003, 497503, 597871, 736291, 765703, 954271, 1024651, 1056331, 1152271, 1314631, 1869211, 2741311, 3270403, 3913003, 4255903, 4686391, 5292631, 5481451, 6186403, 6969511
Offset: 1

Views

Author

Amiram Eldar, Nov 20 2019

Keywords

Comments

Odd numbers k such that A071294((k-1)/2) = A000010(k)/4.
For each odd composite number m > 9 the number of witnesses <= phi(m)/4. For numbers in this sequence the ratio reaches the maximal possible value 1/4.
The semiprime terms of this sequence are of the form (2*m+1)*(4*m+1) where 2*m+1 and 4*m+1 are primes and m is odd.

Examples

			15 is in the sequence since out of the phi(15) = 8 numbers 1 <= b < 15 that are coprime to 15, i.e., b = 1, 2, 4, 7, 8, 11, 13, and 14, 8/4 = 2 are witnesses for the strong pseudoprimality of 15: 1 and 14.
		

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, 2nd ed., Springer, 2005, Theorem 3.5.4., p. 136.

Crossrefs

Programs

  • Mathematica
    o[n_] := (n - 1)/2^IntegerExponent[n - 1, 2];
    a[n_?PrimeQ] := n - 1; a[n_] := Module[{p = FactorInteger[n][[;; , 1]]}, om = Length[p]; Product[GCD[o[n], o[p[[k]]]], {k, 1, om}] * (1 + (2^(om * Min[IntegerExponent[#, 2] & /@ (p - 1)]) - 1)/(2^om - 1))];
    aQ[n_] := CompositeQ[n] && a[n] == EulerPhi[n]/4; s = Select[Range[3, 10^5, 2], aQ]
Showing 1-4 of 4 results.