cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014235 Number of n X n matrices with entries 0 and 1 and no 2 X 2 submatrix of form [ 1 1; 1 0 ].

Original entry on oeis.org

1, 2, 12, 128, 2100, 48032, 1444212, 54763088, 2540607060, 140893490432, 9170099291892, 690117597121328, 59318536757456340, 5763381455631211232, 627402010180980401652, 75942075645205885599248, 10153054354133705795859540, 1490544499134409408040599232
Offset: 0

Views

Author

Keywords

Examples

			For n = 2 the 12 matrices are all the 2 X 2 0-1 matrices except
[1 1]  [1 0]  [0 1]  [1 1]
[1 0], [1 1], [1 1], [0 1]. - _Robert Israel_, Feb 19 2015
		

Crossrefs

Row sums of A334689.

Programs

  • Maple
    f:= n -> add(k!*combinat:-stirling2(n+1,k+1)^2, k = 0 .. n):
    seq(f(n),n=0..30); # Robert Israel, Feb 19 2015
  • Mathematica
    Table[Sum[StirlingS2[n+1, k+1]^2k!, {k, 0, n}], {n, 0, 100}] (* Emanuele Munarini, Jul 04 2011 *)
  • Maxima
    makelist(sum(stirling2(n+1, k+1)^2*k!, k, 0, n), n, 0, 24); /* Emanuele Munarini, Jul 04 2011 */
    
  • PARI
    a(n) = sum(k=0, n, k! * stirling(n+1, k+1, 2)^2); \\ Michel Marcus, Feb 21 2015

Formula

a(n) = Sum_{k=0..n} k! * Stirling2(n+1, k+1)^2.

Extensions

a(0)=1 added by Emanuele Munarini, Jul 04 2011