A014261 Numbers that contain odd digits only.
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 31, 33, 35, 37, 39, 51, 53, 55, 57, 59, 71, 73, 75, 77, 79, 91, 93, 95, 97, 99, 111, 113, 115, 117, 119, 131, 133, 135, 137, 139, 151, 153, 155, 157, 159, 171, 173, 175, 177, 179, 191, 193, 195, 197, 199, 311, 313, 315, 317, 319
Offset: 1
Examples
a(10^3) = 13779. a(10^4) = 397779. a(10^5) = 11177779. a(10^6) = 335777779.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for 10-automatic sequences.
Crossrefs
Programs
-
Haskell
a014261 n = a014261_list !! (n-1) a014261_list = filter (all (`elem` "13579") . show) [1,3..] -- Reinhard Zumkeller, Jul 05 2011
-
Magma
[ n : n in [1..129] | IsOdd(&*Intseq(n,10)) ];
-
Mathematica
Select[Range[400], OddQ[Times@@IntegerDigits[#]] &] (* Alonso del Arte, Feb 21 2014 *)
-
PARI
is(n)=Set(digits(n)%2)==[1] \\ Charles R Greathouse IV, Jul 06 2017
-
PARI
a(n)={my(k=1); while(n>5^k, n-=5^k; k++); fromdigits([2*d+1 | d<-digits(5^k+n-1, 5)]) - 3*10^k} \\ Andrew Howroyd, Jan 17 2020
-
Python
from itertools import islice, count def A014261(): return filter(lambda n: set(str(n)) <= {'1','3','5','7','9'}, count(1,2)) A014261_list = list(islice(A014261(),20)) # Chai Wah Wu, Nov 22 2021
-
Python
from itertools import count, islice, product def agen(): yield from (int("".join(p)) for d in count(1) for p in product("13579", repeat=d)) print(list(islice(agen(), 60))) # Michael S. Branicky, Jan 13 2022
Formula
From Reinhard Zumkeller, Aug 30 2009: (Start)
a(n+1) - a(n) = A164898(n). - Reinhard Zumkeller, Aug 30 2009
a(n+1) = h(a(n)) with h(x) = 1 + (if x mod 10 < 9 then x + x mod 2 else 10*h(floor(x/10)));
a(n) = f(n, 1) where f(n, x) = if n = 1 then x else f(n-1, h(x)). (End)
From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = Sum_{j = 0..m-1} ((2*b_j(n)+1) mod 10)*10^j, where b_j(n) = floor((4*n+1-5^m)/(4*5^j)), m = floor(log_5(4*n+1)).
a(1*(5^n-1)/4) = 1*(10^n-1)/9.
a(2*(5^n-1)/4) = 1*(10^n-1)/3.
a(3*(5^n-1)/4) = 5*(10^n-1)/9.
a(4*(5^n-1)/4) = 7*(10^n-1)/9.
a(5*(5^n-1)/4) = 10^n - 1.
a((5^n-1)/4 + 5^(n-1)-1) = (10^n-5)/5.
a(n) = (10^log_5(4*n+1)-1)/9 for n = (5^k-1)/4, k > 0.
a(n) < (10^log_5(4*n+1)-1)/9 for (5^k-1)/4 < n < (5^(k+1)-1)/4, k > 0.
a(n) <= 27/(9*2^log_5(9)-1)*(10^log_5(4*n+1)-1)/9 for n > 0, equality holds for n = 2.
a(n) > 0.776*10^log_5(4*n+1)-1)/9 for n > 0.
a(n) >= A001742(n), equality holds for n = (5^k-1)/4, k > 0.
G.f.: g(x)= (x^(1/4)*(1-x))^(-1) Sum_{j >= 0} 10^j*z(j)^(5/4)*(1-z(j))*(1 + 3*z(j) + 5*z(j)^2 + 7*z(j)^3 + 9*z(j)^4)/(1-z(j)^5), where z(j) = x^5^j.
Also: g(x) = (1/(1-x))*(h_(5,0)(x) + 2*h_(5,1)(x) + 2*h_(5,2)(x) + 2*h_(5,3)(x) + 2*h_(5,4)(x) - 9*h_(5,5)(x)), where h_(5,k)(x) = Sum_{j >= 0} 10^j*x^((5^(j+1)-1)/4)*(x^5^j)^k/(1-(x^5^j)^5). (End)
Sum_{n>=1} 1/a(n) = A194181. - Bernard Schott, Jan 13 2022
Extensions
More terms from Robert G. Wilson v, Oct 18 2002
Examples and crossrefs added by Hieronymus Fischer, Jun 06 2012
Comments