cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 67 results. Next

A226091 Smallest m such that A225985(m) = A014261(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 22, 24, 26, 28, 30, 37, 39, 41, 43, 45, 52, 54, 56, 58, 60, 67, 69, 71, 73, 75, 87, 89, 91, 93, 95, 107, 109, 111, 113, 115, 127, 129, 131, 133, 135, 147, 149, 151, 153, 155, 167, 169, 171, 173, 175, 262, 264, 266, 268, 270
Offset: 1

Views

Author

Reinhard Zumkeller, May 26 2013

Keywords

Comments

A225985(a(n)) = A014261(n).

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a226091 = (+ 1) . fromJust . (`elemIndex` a225985_list) . a014261

A000351 Powers of 5: a(n) = 5^n.

Original entry on oeis.org

1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125, 6103515625, 30517578125, 152587890625, 762939453125, 3814697265625, 19073486328125, 95367431640625, 476837158203125, 2384185791015625, 11920928955078125
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 5), L(1, 5), P(1, 5), T(1, 5). Essentially same as Pisot sequences E(5, 25), L(5, 25), P(5, 25), T(5, 25). See A008776 for definitions of Pisot sequences.
a(n) has leading digit 1 if and only if n = A067497 - 1. - Lekraj Beedassy, Jul 09 2002
With interpolated zeros 0, 1, 0, 5, 0, 25, ... (g.f.: x/(1 - 5*x^2)) second inverse binomial transform of Fibonacci(3n)/Fibonacci(3) (A001076). Binomial transform is A085449. - Paul Barry, Mar 14 2004
Sums of rows of the triangles in A013620 and A038220. - Reinhard Zumkeller, May 14 2006
Sum of coefficients of expansion of (1 + x + x^2 + x^3 + x^4)^n. a(n) is number of compositions of natural numbers into n parts less than 5. a(2) = 25 there are 25 compositions of natural numbers into 2 parts less than 5. - Adi Dani, Jun 22 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 5-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(5n) = 5n + sigma(n). In fact we have this theorem: p is a prime if and only if all solutions of the equation sigma(p*x) = p*x + sigma(x) are powers of p. - Jahangeer Kholdi, Nov 23 2013
From Doug Bell, Jun 22 2015: (Start)
Empirical observation: Where n is an odd multiple of 3, let x = (a(n) + 1)/9 and let y be the decimal expansion of x/a(n); then y*(x+1)/x + 1 = y rotated to the left.
Example:
a(3) = 125;
x = (125 + 1)/9 = 14;
y = 112, which is the decimal expansion of 14/125 = 0.112;
112*(14 + 1)/14 + 1 = 121 = 112 rotated to the left.
(End)
a(n) is the number of n-digit integers that contain only odd digits (A014261). - Bernard Schott, Nov 12 2022
Number of pyramids in the Sierpinski fractal square-based pyramid at the n-th step, while A279511 gives the corresponding number of vertices (see IREM link with drawings). - Bernard Schott, Nov 29 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A009969 (even bisection), A013710 (odd bisection), A005054 (first differences), A003463 (partial sums).
Sierpinski fractal square-based pyramid: A020858 (Hausdorff dimension), A279511 (number of vertices), this sequence (number of pyramids).

Programs

Formula

a(n) = 5^n.
a(0) = 1; a(n) = 5*a(n-1) for n > 0.
G.f.: 1/(1 - 5*x).
E.g.f.: exp(5*x).
a(n) = A006495(n)^2 + A006496(n)^2.
a(n) = A159991(n) / A001021(n). - Reinhard Zumkeller, May 02 2009
From Bernard Schott, Nov 12 2022: (Start)
Sum_{n>=0} 1/a(n) = 5/4.
Sum_{n>=0} (-1)^n/a(n) = 5/6. (End)
a(n) = Sum_{k=0..n} C(2*n+1,n-k)*A000045(2*k+1). - Vladimir Kruchinin, Jan 14 2025

A007954 Product of decimal digits of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

R. Muller

Keywords

Comments

Moebius transform of A093811(n). a(n) = A093811(n) * A008683(n), where operation * denotes Dirichlet convolution, namely b(n) * c(n) = Sum_{d|n} b(d) * c(n/d). Simultaneously holds Dirichlet multiplication: a(n) * A000012(n) = A093811(n). - Jaroslav Krizek, Mar 22 2009
Apart from the 0's, all terms are in A002473. Further, for all m in A002473 there is some n such that a(n) = m, see A096867. - Charles R Greathouse IV, Sep 29 2013
a(n) = 0 asymptotically almost surely, namely for all n except for the set of numbers without digit '0'; this set is of density zero, since it is less and less probable to have no '0' as the number of digits of n grows. (See also A054054.) - M. F. Hasler, Oct 11 2015

Crossrefs

Cf. A031347 (different from A035930), A007953, A007602, A010888, A093811, A008683, A000012, A061076 (partial sums), A230099.
Cf. A051802 (ignoring zeros).

Programs

  • Haskell
    a007954 n | n < 10 = n
              | otherwise = m * a007954 n' where (n', m) = divMod n 10
    -- Reinhard Zumkeller, Oct 26 2012, Mar 14 2011
    
  • Magma
    [0] cat [&*Intseq(n): n in [1..110]]; // Vincenzo Librandi, Jan 03 2020
    
  • Maple
    A007954 := proc(n::integer)
        if n = 0 then
            0;
        else
            mul( d,d=convert(n,base,10)) ;
        end if;
    end proc: # R. J. Mathar, Oct 02 2019
  • Mathematica
    Array[Times @@ IntegerDigits@ # &, 108, 0] (* Robert G. Wilson v, Mar 15 2011 *)
  • PARI
    A007954(n)= { local(resul = n % 10); n \= 10; while( n > 0, resul *= n %10; n \= 10; ); return(resul); } \\ R. J. Mathar, May 23 2006, edited by M. F. Hasler, Apr 23 2015
    
  • PARI
    A007954(n)=prod(i=1,#n=Vecsmall(Str(n)),n[i]-48) \\ (...eval(Vec(...)),n[i]) is about 50% slower; (...digits(n)...) about 6% slower. \\ M. F. Hasler, Dec 06 2009
    
  • PARI
    a(n)=if(n,factorback(digits(n)),0) \\ Charles R Greathouse IV, Apr 14 2020
    
  • Python
    from math import prod
    def a(n): return prod(map(int, str(n)))
    print([a(n) for n in range(108)]) # Michael S. Branicky, Jan 16 2022
  • Scala
    (0 to 99).map(.toString.toCharArray.map( - 48).scanRight(1)( * ).head) // Alonso del Arte, Apr 14 2020
    

Formula

A000035(a(A014261(n))) = 1. - Reinhard Zumkeller, Nov 30 2007
a(n) = abs(A187844(n)). - Reinhard Zumkeller, Mar 14 2011
a(n) > 0 if and only if A054054(n) > 0. a(n) = d in {1, ..., 9} if n = (10^k - 1)/9 + (d - 1)*10^m = A002275(k) + (d - 1)*A011557(m) for some k > m >= 0. The statement holds with "if and only if" for d in {1, 2, 3, 5, 7}. For d = 4, 6, 8 or 9, one has a(n) = d if n = (10^k - 1)/9 + (a - 1)*10^m + (b - 1)*10^p with integers k > m > p >= 0 and a, b > 0 such that d = a*b. - M. F. Hasler, Oct 11 2015
From Robert Israel, May 17 2016: (Start)
G.f.: Sum_{n >= 0} Product_{j = 0..n} Sum_{k = 1..9} k*x^(k*10^j).
G.f. satisfies A(x) = (x + 2*x^2 + ... + 9*x^9)*(1 + A(x^10)). (End)
a(n) <= 9^(1 + log_10(n/9)). - Lucas A. Brown, Jun 22 2023

Extensions

Error in term 25 corrected, Nov 15 1995

A046034 Numbers whose digits are primes.

Original entry on oeis.org

2, 3, 5, 7, 22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 222, 223, 225, 227, 232, 233, 235, 237, 252, 253, 255, 257, 272, 273, 275, 277, 322, 323, 325, 327, 332, 333, 335, 337, 352, 353, 355, 357, 372, 373, 375, 377, 522, 523, 525, 527, 532
Offset: 1

Views

Author

Keywords

Comments

If n is represented as a zerofree base-4 number (see A084544) according to n=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=2,3,5,7 for k=1..4. - Hieronymus Fischer, May 30 2012
According to A153025, it seems that 5, 235 and 72335 are the only terms whose square is also a term, i.e., which are also in the sequence A275971 of square roots of the terms which are squares, listed in A191486. - M. F. Hasler, Sep 16 2016

Examples

			a(100)   = 2277,
a(10^3)  = 55327,
a(9881)  = 3233232,
a(10^4)  = 3235757,
a(10922) = 3333333,
a(10^5)  = 227233257.
		

Crossrefs

Programs

  • Haskell
    a046034 n = a046034_list !! (n-1)
    a046034_list = filter (all (`elem` "2357") . show ) [0..]
    -- Reinhard Zumkeller, Jul 19 2011
    
  • Magma
    [n: n in [2..532] | Set(Intseq(n)) subset [2, 3, 5, 7]];  // Bruno Berselli, Jul 19 2011
    
  • Mathematica
    Table[FromDigits /@ Tuples[{2, 3, 5, 7}, n], {n, 3}] // Flatten (* Michael De Vlieger, Sep 19 2016 *)
  • PARI
    is_A046034(n)=Set(isprime(digits(n)))==[1] \\ M. F. Hasler, Oct 12 2013
    
  • Python
    def A046034(n):
        m = (3*n+1).bit_length()-1>>1
        return int(''.join(('2357'[(3*n+1-(1<<(m<<1)))//(3<<((m-1-j)<<1))&3] for j in range(m)))) # Chai Wah Wu, Feb 08 2023

Formula

A055642(a(n)) = A193238(a(n)). - Reinhard Zumkeller, Jul 19 2011
From Hieronymus Fischer, Apr 20, May 30 and Jun 25 2012: (Start)
a(n) = Sum_{j=0..m-1} ((2*b(j)+1) mod 8 + floor(b(j)/4) - floor((b(j)-1)/4))*10^j, where m = floor(log_4(3*n+1)), b(j) = floor((3*n+1-4^m)/(3*4^j)).
a(n) = Sum_{j=0..m-1} A010877(A005408(b(j)) + A002265(b(j)) - A002265(b(j)-1))*10^j.
Special values:
a(1*(4^n-1)/3) = 2*(10^n-1)/9.
a(2*(4^n-1)/3) = 1*(10^n-1)/3.
a(3*(4^n-1)/3) = 5*(10^n-1)/9.
a(4*(4^n-1)/3) = 7*(10^n-1)/9.
Inequalities:
a(n) <= 2*(10^log_4(3*n+1)-1)/9, equality holds for n = (4^k-1)/3, k>0.
a(n) <= 2*A084544(n), equality holds iff all digits of A084544(n) are 1.
a(n) > A084544(n).
Lower and upper limits:
lim inf a(n)/10^log_4(n) = (7/90)*10^log_4(3) = 0.48232167706987..., for n -> oo.
lim sup a(n)/10^log_4(n) = (2/9)*10^log_4(3) = 1.378061934485343..., for n -> oo.
where 10^log_4(n) = n^1.66096404744...
G.f.: g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(2 + z(j) + 2*z(j)^2 + 2*z(j)^3 - 7*z(j)^4)/(1-z(j)^4), where z(j) = x^4^j.
Also g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(1-z(j))*(2 + 3*z(j) + 5*z(j)^2 + 7*z(j)^3)/(1-z(j)^4), where z(j)=x^4^j.
Also: g(x) = (1/(1-x))*(2*h_(4,0)(x) + h_(4,1)(x) + 2*h_(4,2)(x) + 2*h_(4,3)(x) - 7*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*x^((4^(j+1)-1)/3)*x^(k*4^j)/(1-x^4^(j+1)). (End)
Sum_{n>=1} 1/a(n) = 1.857333779940977502574887651449435985318556794733869779170825138954093657197... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024

Extensions

More terms from Cino Hilliard, Aug 06 2006
Typo in second formula corrected by Hieronymus Fischer, May 12 2012
Two typos in example section corrected by Hieronymus Fischer, May 30 2012

A007931 Numbers that contain only 1's and 2's. Nonempty binary strings of length n in lexicographic order.

Original entry on oeis.org

1, 2, 11, 12, 21, 22, 111, 112, 121, 122, 211, 212, 221, 222, 1111, 1112, 1121, 1122, 1211, 1212, 1221, 1222, 2111, 2112, 2121, 2122, 2211, 2212, 2221, 2222, 11111, 11112, 11121, 11122, 11211, 11212, 11221, 11222, 12111, 12112, 12121, 12122
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Numbers written in the dyadic system [Smullyan, Stillwell]. - N. J. A. Sloane, Feb 13 2019
Logic-binary sequence: prefix it by the empty word to have all binary words on the alphabet {1,2}.
The least binary word of length k is a(2^k - 1).
See Mathematica program for logic-binary sequence using (0,1) in place of (1,2); the sequence starts with 0,1,00,01,10. - Clark Kimberling, Feb 09 2012
A007953(a(n)) = A014701(n+1); A007954(a(n)) = A048896(n). - Reinhard Zumkeller, Oct 26 2012
a(n) is n written in base 2 where zeros are not allowed but twos are. The two distinct digits used are 1, 2 instead of 0, 1. To obtain this sequence from the "canonical" base 2 sequence with zeros allowed, just replace any 0 with a 2 and then subtract one from the group of digits situated on the left: (10-->2; 100-->12; 110-->22; 1000-->112; 1010-->122). - Robin Garcia, Jan 31 2014
For numbers made of only two different digits, see also A007088 (digits 0 & 1), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340(digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases). Numbers with exactly two distinct (but unspecified) digits in base 10 are listed in A031955, for other bases in A031948-A031954. - M. F. Hasler, Apr 04 2015
The variant with digits {0, 1} instead of {1, 2} is obtained by deleting all initial digits in sequence A007088 (numbers written in base 2). - M. F. Hasler, Nov 03 2020

Examples

			Positive numbers may not start with 0 in the OEIS, otherwise this sequence would have been written as: 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111, 01000, 01001, 01010, 01011, ...
From _Hieronymus Fischer_, Jun 06 2012: (Start)
a(10)   = 122.
a(100)  = 211212.
a(10^3) = 222212112.
a(10^4) = 1122211121112.
a(10^5) = 2111122121211112.
a(10^6) = 2221211112112111112.
a(10^7) = 11221112112122121111112.
a(10^8) = 12222212122221111211111112.
a(10^9) = 22122211221212211212111111112. (End)
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 2. - From N. J. A. Sloane, Jul 26 2012
  • K. Atanassov, On the 97th, 98th and the 99th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 3, 89-93.
  • R. M. Smullyan, Theory of Formal Systems, Princeton, 1961.
  • John Stillwell, Reverse Mathematics, Princeton, 2018. See p. 90.

Crossrefs

Cf. A007932 (digits 1-3), A059893, A045670, A052382 (digits 1-9), A059939, A059941, A059943, A032924, A084544, A084545, A046034 (prime digits 2,3,5,7), A089581, A084984 (no prime digits); A001742, A001743, A001744: loops; A202267 (digits 0, 1 and primes), A202268 (digits 1,4,6,8,9), A014261 (odd digits), A014263 (even digits).
Cf. A007088 (digits 0 & 1), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases).
Cf. A020450 (primes).

Programs

  • Haskell
    a007931 n = f (n + 1) where
       f x = if x < 2 then 0 else (10 * f x') + m + 1
         where (x', m) = divMod x 2
    -- Reinhard Zumkeller, Oct 26 2012
    
  • Magma
    [n: n in [1..100000] | Set(Intseq(n)) subset {1,2}]; // Vincenzo Librandi, Aug 19 2016
    
  • Maple
    # Maple program to produce the sequence:
    a:= proc(n) local m, r, d; m, r:= n, 0;
          while m>0 do d:= irem(m, 2, 'm');
            if d=0 then d:=2; m:= m-1 fi;
            r:= d, r
          od; parse(cat(r))/10
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 26 2016
    # Maple program to invert this sequence: given a(n), it returns n. - N. J. A. Sloane, Jul 09 2012
    invert7931:=proc(u)
    local t1,t2,i;
    t1:=convert(u,base,10);
    [seq(t1[i]-1,i=1..nops(t1))];
    [op(%),1];
    t2:=convert(%,base,2,10);
    add(t2[i]*10^(i-1),i=1..nops(t2))-1;
    end;
  • Mathematica
    f[n_] := FromDigits[Rest@IntegerDigits[n + 1, 2] + 1]; Array[f, 42] (* Robert G. Wilson v Sep 14 2006 *)
    (* Next, A007931 using (0,1) instead of (1,2) *)
    d[n_] := FromDigits[Rest@IntegerDigits[n + 1, 2] + 1]; Array[FromCharacterCode[ToCharacterCode[ToString[d[#]]] - 1] &, 100] (* Peter J. C. Moses, at request of Clark Kimberling, Feb 09 2012 *)
    Flatten[Table[FromDigits/@Tuples[{1,2},n],{n,5}]] (* Harvey P. Dale, Sep 13 2014 *)
  • PARI
    apply( {A007931(n)=fromdigits([d+1|d<-binary(n+1)[^1]])}, [1..44]) \\ M. F. Hasler, Nov 03 2020, replacing older code from Mar 26 2015
    
  • PARI
    /* inverse function */ apply( {A007931_inv(N)=fromdigits([d-1|d<-digits(N)],2)+2<M. F. Hasler, Nov 09 2020
    
  • Python
    def a(n): return int(bin(n+1)[3:].replace('1', '2').replace('0', '1'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, May 13 2021
    
  • Python
    def A007931(n): return int(s:=bin(n+1)[3:])+(10**(len(s))-1)//9 # Chai Wah Wu, Jun 13 2025

Formula

To get a(n), write n+1 in base 2, remove initial 1, add 1 to all remaining digits: e.g., eleven (11) in base 2 is 1011; remove initial 1 and add 1 to remaining digits: a(10)=122. - Clark Kimberling, Mar 11 2003
Conversely, given a(n), to get n: subtract 1 from all digits, prefix with an initial 1, convert this binary number to base 10, subtract 1. E.g., a(6)=22 -> 11 -> 111 -> 7 -> 6. - N. J. A. Sloane, Jul 09 2012
a(n) = A053645(n+1)+A002275(A000523(n)) = a(n-2^b(n))+10^b(n) where b(n) = A059939(n) = floor(log_2(n+1)-1). - Henry Bottomley, Feb 14 2001
From Hieronymus Fischer, Jun 06 2012 and Jun 08 2012: (Start)
The formulas are designed to calculate base-10 numbers only using the digits 1 and 2.
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 2)*10^j, where m = floor(log_2(n+1)), b(j) = floor((n+1-2^m)/(2^j)).
Special values:
a(k*(2^n-1)) = k*(10^n-1)/9, k= 1,2.
a(3*2^n-2) = (11*10^n-2)/9 = 10^n+2*(10^n-1)/9.
a(2^n-2) = 2*(10^(n-1)-1)/9, n>1.
Inequalities:
a(n) <= (10^log_2(n+1)-1)/9, equality holds for n=2^k-1, k>0.
a(n) > (2/10)*(10^log_2(n+1)-1)/9.
Lower and upper limits:
lim inf a(n)/10^log_2(n) = 1/45, for n --> infinity.
lim sup a(n)/10^log_2(n) = 1/9, for n --> infinity.
G.f.: g(x) = (1/(x(1-x)))*sum_{j=0..infinity} 10^j* x^(2*2^j)*(1 + 2 x^2^j)/(1 + x^2^j).
Also: g(x) = (1/(1-x))*(h_(2,0)(x) + h_(2,1)(x) - 2*h_(2,2)(x)), where h_(2,k)(x) = sum_{j>=0} 10^j*x^(2^(j+1)-1)*x^(k*2^j)/(1-x^2^(j+1)).
Also: g(x) = (1/(1-x)) sum_{j>=0} (1 - 3(x^2^j)^2 + 2(x^2^j)^3)*x^2^j*f_j(x)/(1-x^2^j), where f_j(x) = 10^j*x^(2^j-1)/(1-(x^2^j)^2). The f_j obey the recurrence f_0(x) = 1/(1-x^2), f_(j+1)(x) = 10x*f_j(x^2). (End)

Extensions

Some crossrefs added by Hieronymus Fischer, Jun 06 2012
Edited by M. F. Hasler, Mar 26 2015

A014263 Numbers that contain even digits only.

Original entry on oeis.org

0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 40, 42, 44, 46, 48, 60, 62, 64, 66, 68, 80, 82, 84, 86, 88, 200, 202, 204, 206, 208, 220, 222, 224, 226, 228, 240, 242, 244, 246, 248, 260, 262, 264, 266, 268, 280, 282, 284, 286, 288, 400, 402, 404, 406, 408, 420, 422, 424
Offset: 1

Views

Author

Keywords

Comments

The set of real numbers between 0 and 1 that contain no odd digits in their decimal expansion has Hausdorff dimension log 5 / log 10.
Integers written in base 5 and then doubled (in base 10). - Franklin T. Adams-Watters, Mar 15 2006
The carryless mod 10 "even" numbers (cf. A004529) sorted and duplicates removed. - N. J. A. Sloane, Aug 03 2010.
Complement of A007957; A196564(a(n)) = 0; A103181(a(n)) = 0. - Reinhard Zumkeller, Oct 04 2011
If n-1 is represented as a base-5 number (see A007091) according to n-1 = d(m)d(m-1)…d(3)d(2)d(1)d(0) then a(n)= Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,2,4,6,8 for k=0..4. - Hieronymus Fischer, Jun 03 2012

Examples

			a(1000) = 24888.
a(10^4) = 60888.
a(10^5) = 22288888.
a(10^6) = 446888888.
		

References

  • K. J. Falconer, The Geometry of Fractal Sets, Cambridge, 1985; p. 19.

Crossrefs

Programs

  • Haskell
    a014263 n = a014263_list !! (n-1)
    a014263_list = filter (all (`elem` "02468") . show) [0,2..]
    -- Reinhard Zumkeller, Jul 05 2011
    
  • Magma
    [n: n in [0..424] | Set(Intseq(n)) subset [0..8 by 2]];  // Bruno Berselli, Jul 19 2011
    
  • Maple
    a:= proc(m) local L,i;
      L:= convert(m-1,base,5);
      2*add(L[i]*10^(i-1),i=1..nops(L))
    end proc:
    seq(a(i),i=1..100); # Robert Israel, Apr 07 2016
  • Mathematica
    Select[Range[450], And@@EvenQ[IntegerDigits[#]]&] (* Harvey P. Dale, Jan 30 2011 *)
    FromDigits/@Tuples[{0,2,4,6,8},3] (* Harvey P. Dale, Jul 07 2025 *)
  • PARI
    a(n) = 2*fromdigits(digits(n-1, 5), 10); \\ Michel Marcus, Nov 04 2022
    
  • PARI
    is(n)=#setminus(Set(digits(n)), [0,2,4,6,8])==0 \\ Charles R Greathouse IV, Mar 03 2025
  • Python
    from sympy.ntheory.digits import digits
    def a(n): return int(''.join(str(2*d) for d in digits(n, 5)[1:]))
    print([a(n) for n in range(58)]) # Michael S. Branicky, Jan 13 2022
    
  • Python
    from itertools import count, islice, product
    def agen(): # generator of terms
        yield 0
        for d in count(1):
            for first in "2468":
                for rest in product("02468", repeat=d-1):
                    yield int(first + "".join(rest))
    print(list(islice(agen(), 58))) # Michael S. Branicky, Jan 13 2022
    

Formula

A045888(a(n)) = 0. - Reinhard Zumkeller, Aug 25 2009
a(n) = A179082(n) for n <= 25. - Reinhard Zumkeller, Jun 28 2010
From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = ((2*b_m(n)) mod 8 + 2)*10^m + Sum_{j=0..m-1} ((2*b_j(n)) mod 10)*10^j, where n>1, b_j(n) = floor((n-1-5^m)/5^j), m = floor(log_5(n-1)).
a(1*5^n+1) = 2*10^n.
a(2*5^n+1) = 4*10^n.
a(3*5^n+1) = 6*10^n.
a(4*5^n+1) = 8*10^n.
a(n) = 2*10^log_5(n-1) for n=5^k+1,
a(n) < 2*10^log_5(n-1), else.
a(n) > (8/9)*10^log_5(n-1) n>1.
a(n) = 2*A007091(n-1), iff the digits of A007091(n-1) are 0 or 1.
G.f.: g(x) = (x/(1-x))*Sum_{j>=0} 10^j*x^5^j *(1-x^5^j)* (2+4x^5^j+ 6(x^2)^5^j+ 8(x^3)^5^j)/(1-x^5^(j+1)).
Also: g(x) = 2*(x/(1-x))*Sum_{j>=0} 10^j*x^5^j * (1-4x^(3*5^j)+3x^(4*5^j))/((1-x^5^j)(1-x^5^(j+1))).
Also: g(x) = 2*(x/(1-x))*(h_(5,1)(x) + h_(5,2)(x) + h_(5,3)(x) + h_(5,4)(x) - 4*h_(5,5)(x)), where h_(5,k)(x) = Sum_{j>=0} 10^j*(x^5^j)^k/(1-(x^5^j)^5). (End)
a(5*n+i-4) = 10*a(n) + 2*i for n >= 1, i=0..4. - Robert Israel, Apr 07 2016
Sum_{n>=2} 1/a(n) = A194182. - Bernard Schott, Jan 13 2022

Extensions

Examples and crossrefs added by Hieronymus Fischer, Jun 06 2012

A196564 Number of odd digits in decimal representation of n.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 1, 0, 1, 0, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 04 2011

Keywords

Crossrefs

Programs

  • Haskell
    a196564 n = length [d | d <- show n, d `elem` "13579"]
    -- Reinhard Zumkeller, Feb 22 2012, Oct 04 2011
    
  • Maple
    A196564 := proc(n)
            if n =0 then
                    0;
            else
                    convert(n,base,10) ;
                    add(d mod 2,d=%) ;
            end if:
    end proc: # R. J. Mathar, Jul 13 2012
  • Mathematica
    Table[Total[Mod[IntegerDigits[n],2]],{n,0,100}] (* Zak Seidov, Oct 13 2015 *)
  • PARI
    a(n) = #select(x->x%2, digits(n)); \\ Michel Marcus, Oct 14 2015
    
  • Python
    def a(n): return sum(1 for d in str(n) if d in "13579")
    print([a(n) for n in range(100)]) # Michael S. Branicky, May 15 2022

Formula

a(n) = A055642(n) - A196563(n);
a(A014263(n)) = 0; a(A007957(n)) > 0.
From Hieronymus Fischer, May 30 2012: (Start)
a(n) = Sum_{j=0..m} (floor(n/(2*10^j) + (1/2)) - floor(n/(2*10^j))), where m=floor(log_10(n)).
a(10*n+k) = a(n) + a(k), 0<=k<10, n>=0.
a(n) = a(floor(n/10)) + a(n mod 10), n>=0.
a(n) = Sum_{j=0..m} a(floor(n/10^j) mod 10), n>=0.
a(A014261(n)) = floor(log_5(4*n+1)), n>0.
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} x^10^j/(1+x^10^j). (End)

A196563 Number of even digits in decimal representation of n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 04 2011

Keywords

Crossrefs

Programs

  • Haskell
    a196563 n = length [d | d <- show n, d `elem` "02468"]
    -- Reinhard Zumkeller, Feb 22 2012, Oct 04 2011
    
  • Maple
    A196563 := proc(n)
            if n =0 then
                    1;
            else
                    convert(n,base,10) ;
                    add(1-(d mod 2),d=%) ;
            end if:
    end proc: # R. J. Mathar, Jul 13 2012
  • Mathematica
    Table[Count[Mod[IntegerDigits[n],2],0][n],{n,0,100}] (* Zak Seidov, Oct 13 2015 *)
    Table[Count[IntegerDigits[n],?EvenQ],{n,0,120}] (* _Harvey P. Dale, Feb 22 2020 *)
  • PARI
    a(n) = #select(x->(!(x%2)), if (n, digits(n), [0])); \\ Michel Marcus, Oct 14 2015
    
  • Python
    def a(n): return sum(1 for d in str(n) if d in "02468")
    print([a(n) for n in range(100)]) # Michael S. Branicky, May 15 2022

Formula

a(n) = A055642(n) - A196564(n);
a(A014261(n)) = 0; a(A007928(n)) > 0.
From Hieronymus Fischer, May 30 2012: (Start)
a(n) = Sum_{j=0..m} (1 + floor(n/(2*10^j)) - floor(n/(2*10^j) + (1/2))), where m=floor(log_10(n)).
a(10*n+k) = a(n) + a(k), 0<=k<10, n>=1.
a(n) = a(floor(n/10))+a(n mod 10), n>=10.
a(n) = Sum_{j=0..m} a(floor(n/10^j) mod 10), n>=0.
a(A014263(n)) = 1 + floor(log_5(n-1)), n>1.
G.f.: g(x) = 1 + (1/(1-x))*Sum_{j>=0} x^(2*10^j)/(1+x^10^j). (End)

A030096 Primes whose digits are all odd.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97, 113, 131, 137, 139, 151, 157, 173, 179, 191, 193, 197, 199, 311, 313, 317, 331, 337, 353, 359, 373, 379, 397, 557, 571, 577, 593, 599, 719, 733, 739, 751, 757, 773, 797, 911, 919, 937, 953, 971, 977, 991
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A000040 and A014261. Subsequence of A066640 and hence A014261. Subsequence of A038604. A091633 is a subsequence.
Cf. A076704 = odd-digit prime powers of prime numbers; A091296 = odd-digit semiprimes; A000040 = prime numbers; A001358 = semiprimes.

Programs

  • Haskell
    a030096 n = a030096_list !! (n-1)
    a030096_list = filter f a000040_list where
       f x = odd d && (x < 10 || f x') where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Apr 07 2014, Jan 29 2013
    
  • Magma
    [p: p in PrimesUpTo(1000) | forall{d: d in [0,2,4,6,8] | d notin Set(Intseq(p))}]; // Vincenzo Librandi, Apr 29 2019
  • Mathematica
    Select[Prime[Range[500]],And@@OddQ[IntegerDigits[#]]&] (* Harvey P. Dale, Jan 28 2013 *)
  • PARI
    is(n)=isprime(n) && #setintersect([0,2,4,6,8],Set(digits(n)))==0 \\ Charles R Greathouse IV, Feb 07 2017
    

Extensions

Edited by N. J. A. Sloane at the suggestion of T. D. Noe and Jonathan Vos Post, Sep 15 2007

A001744 Numbers n such that every digit contains a loop (version 2).

Original entry on oeis.org

0, 4, 6, 8, 9, 40, 44, 46, 48, 49, 60, 64, 66, 68, 69, 80, 84, 86, 88, 89, 90, 94, 96, 98, 99, 400, 404, 406, 408, 409, 440, 444, 446, 448, 449, 460, 464, 466, 468, 469, 480, 484, 486, 488, 489, 490, 494, 496, 498, 499, 600, 604, 606, 608, 609, 640, 644, 646
Offset: 1

Views

Author

Keywords

Comments

See A001743 for the other version.
If n-1 is represented as a base-5 number (see A007091) according to n-1 = d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n)= Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,4,6,8,9 for k=0..4. - Hieronymus Fischer, May 30 2012

Examples

			a(1000) = 46999.
a(10^4) = 809999.
a(10^5) = 44499999.
a(10^6) = 668999999.
		

Crossrefs

Programs

  • Mathematica
    FromDigits/@Tuples[{0,4,6,8,9},3] (* Harvey P. Dale, Aug 16 2018 *)
  • PARI
    is(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 5, 7])==0 \\ Felix Fröhlich, Sep 09 2019

Formula

From Hieronymus Fischer, May 30 2012: (Start)
a(n) = ((2*b_m(n)) mod 8 + 4 + floor(b_m(n)/4) - floor((b_m(n)+1)/4))*10^m + sum_{j=0..m-1} ((2*b_j(n))) mod 10 + 2*floor((b_j(n)+4)/5) - floor((b_j(n)+1)/5) -floor(b_j(n)/5)))*10^j, where n>1, b_j(n)) = floor((n-1-5^m)/5^j), m = floor(log_5(n-1)).
a(1*5^n+1) = 4*10^n.
a(2*5^n+1) = 6*10^n.
a(3*5^n+1) = 8*10^n.
a(4*5^n+1) = 9*10^n.
a(n) = 4*10^log_5(n-1) for n=5^k+1,
a(n) < 4*10^log_5(n-1), otherwise.
a(n) > 10^log_5(n-1) n>1.
a(n) = 4*A007091(n-1), iff the digits of A007091(n-1) are 0 or 1.
G.f.: g(x) = (x/(1-x))*sum_{j>=0} 10^j*x^5^j*(1-x^5^j)*(4 + 6x^5^j + 8(x^2)^5^j + 9(x^3)^5^j)/(1-x^5^(j+1)).
Also: g(x) = (x/(1-x))*(4*h_(5,1)(x) + 2*h_(5,2)(x) + 2*h_(5,3)(x) + h_(5,4)(x) - 9*h_(5,5)(x)), where h_(5,k)(x) = sum_{j>=0} 10^j*(x^5^j)^k/(1-(x^5^j)^5). (End)

Extensions

Ambiguous comment deleted by Zak Seidov, May 25 2010
Examples added by Hieronymus Fischer, May 30 2012
Showing 1-10 of 67 results. Next