A153446 Terms in A046034 which are pairwise products of terms in A046034.
25, 35, 75, 225, 275, 375, 525, 575, 2275, 2325, 2555, 2775, 3775, 5575, 5775, 7575, 7725, 7755, 22575, 22725, 23275, 23325, 23725, 25275, 25375, 25575, 25725, 27335, 27375, 27775, 32775, 37275, 37775, 52325, 53325, 55225, 55275, 55575, 57375
Offset: 1
Examples
25 = 5*5 = A046034(3)*A046034(3) = A046034(7); 35 = 5*7 = A046034(3)*A046034(4) = A046034(11); 75 = 3*25 = A046034(2)*A046034(7) = A046034(19); 225 = 3*75 = A046034(2)*A046034(19) = A046034(23); 275 = 5*55 = A046034(3)*A046034(15) = A046034(35).
Links
- David W. Wilson, Table of n, a(n) for n = 1..10410
Crossrefs
Cf. A046034 (numbers with prime digits).
Programs
-
Mathematica
Select[Flatten@ Table[FromDigits /@ Tuples[{2, 3, 5, 7}, n], {n, 5}], Function[k, Total@ Map[Times @@ # &, Boole@ Map[Total@ Pick[DigitCount@ #, {1, 0, 0, 1, 0, 1, 0, 1, 1, 1}, 1] == 0 &, Transpose@ {#, k/#} &@ Rest@ Take[#, Ceiling[Length[#]/2]] &@ Divisors@ k, {2}]] > 0]] (* Michael De Vlieger, Sep 19 2016 *) id[n_]:=IntegerDigits[n]; pQ[n_]:=AllTrue[id[n],PrimeQ]; nQ[n_]:=Select[Times@@@Tuples[Select[Divisors[n],AllTrue[id[#],PrimeQ]&],2],#==n&] !={}; Select[Flatten@Table[FromDigits/@Tuples[{2,3,5,7},n],{n,5}],pQ[#]&&nQ[#]&] (* Ivan N. Ianakiev, Jul 20 2022 *)
Comments