A213299 Partial sums of A211681.
2, 5, 10, 17, 40, 77, 130, 203, 440, 813, 1350, 2087, 4460, 8197, 13570, 20943, 44680, 82053, 135790, 209527, 446900, 820637, 1358010, 2095383, 4469120, 8206493, 13580230, 20953967, 44691340
Offset: 1
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..100
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,9,-18,9,0,10,-20,10).
Formula
a(n) = ((3982 + 2709*k + 567*k^2 + 54*k^3)*10^m - 1980*m - 2200 - 495*k + 162*((n+1) mod 2) * (-1)^m * (-1)^floor(n/2))/891, where m=floor((n-1)/4), k=(n-1) mod 4.
G.f.: (2*x*(1+x^10) + 3*x^2*(1 + x^3 + x^5 + x^6) + 5*x^3*(1+x^6) + 7*x^4*(1+x^2))/((1-x)*(1-10*x^4)*(1-x^8)).
From Chai Wah Wu, Feb 08 2023: (Start)
a(n) = 2*a(n-1) - a(n-2) + 9*a(n-4) - 18*a(n-5) + 9*a(n-6) + 10*a(n-8) - 20*a(n-9) + 10*a(n-10) for n > 10.
G.f.: x*(-2*x^7 + 2*x^6 - 5*x^5 + 2*x^4 - 2*x^3 - 2*x^2 - x - 2)/((x - 1)^2*(x^4 + 1)*(10*x^4 - 1)). (End)
Extensions
Typo in g.f. corrected by Hieronymus Fischer, Sep 03 2012
Comments