cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 315 results. Next

A247888 Zeroless numbers n such that n + A007954(n) contains the same digits as n.

Original entry on oeis.org

239, 326, 364, 497, 563, 598, 613, 637, 695, 819, 1215, 1239, 1326, 1364, 1431, 1497, 1512, 1518, 1563, 1598, 1613, 1637, 1695, 1812, 1815, 1819, 2115, 2139, 2313, 2356, 2369, 2419, 2511, 2594, 2639, 2791, 3126, 3213, 3235, 3238, 3259, 3354, 3365, 3561, 4131, 4219, 4346, 4353, 4395
Offset: 1

Views

Author

Derek Orr, Sep 25 2014

Keywords

Crossrefs

Cf. A007954 (product of digits), A052382 (zeroless numbers).

Programs

  • PARI
    for(n=0,10^4,d=digits(n);p=prod(i=1,#d,d[i]);dp=digits(n+p);if(p&&vecsort(d,,8)==vecsort(dp,,8),print1(n,", ")))

A061763 Numbers k such that k is divisible by A061762(k) and the product of digits of k (A007954(k)) is not zero.

Original entry on oeis.org

19, 29, 39, 42, 49, 59, 69, 79, 89, 99, 126, 132, 285, 312, 522, 594, 1134, 1144, 1159, 1211, 1275, 1323, 1365, 1573, 1632, 1634, 1674, 1715, 1813, 1815, 1911, 1919, 1932, 1944, 2133, 2139, 2516, 2793, 3132, 3135, 3161, 3211, 3213, 3216, 3321, 3363, 3393
Offset: 1

Views

Author

Amarnath Murthy, May 20 2001

Keywords

Comments

Intersection of A038366 and A052382 (zeroless numbers). - Michel Marcus, Oct 29 2019

Examples

			42 is a term as 4+2 + 2*4 = 14 and 42 = 14*3.
		

References

  • S. Parmeswaran, S+P numbers, Mathematics Informatics Quarterly, Vol. 9, No. 3 Sept. 1999, Bulgaria.

Crossrefs

Programs

  • Mathematica
    Select[Range[3400], (y = Times @@ (x = IntegerDigits[#])) != 0 && Divisible[#, Plus @@ x + y] &] (* Jayanta Basu, Jul 14 2013 *)
  • PARI
    isok(k) = my(d=digits(k)); vecmin(d) && ((k % (vecprod(d) + vecsum(d))) == 0);

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 23 2001
Offset corrected by Giovanni Resta, Oct 29 2019

A249516 Numbers k for which the digital product A007954(k) contains the same distinct digits as the number k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 111, 1111, 1288, 1557, 1575, 1755, 1828, 1882, 2188, 2818, 2881, 3448, 3484, 3577, 3757, 3775, 3844, 4348, 4384, 4438, 4483, 4834, 4843, 5157, 5175, 5377, 5517, 5571, 5715, 5737, 5751, 5773, 7155, 7357, 7375, 7515, 7537, 7551
Offset: 1

Views

Author

Jaroslav Krizek, Oct 31 2014

Keywords

Examples

			1288 is a member since 1288 and its digital product 1*2*8*8 = 128 have the same digit set {1,2,8}.
		

Crossrefs

Programs

  • Magma
    [0] cat [n: n in [0..100000] | Set(Intseq(n)) eq Set(Intseq(&*Intseq(n)))];
    
  • Mathematica
    Select[Range[0,8000],Union[IntegerDigits[Times@@IntegerDigits[#]]] == Union[ IntegerDigits[#]]&] (* Harvey P. Dale, Aug 05 2018 *)
  • PARI
    print1(0,", ");for(n=1,10^4,d=digits(n);p=prod(i=1,#d,d[i]);if(vecsort(digits(p),,8)==vecsort(d,,8),print1(n,", "))) \\ Derek Orr, Nov 05 2014

A257554 Numbers k such that A007954(k) divides k and k divides A007954(k)^2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 36, 128, 175, 384, 735, 1296, 2916, 18432, 34992, 82944, 139968, 442368, 2333772, 4128768, 9289728, 12192768, 13226976, 13395375, 13436928, 27869184, 49787136, 376233984, 429981696, 1269789696, 2633637888, 4161798144, 16728477696, 19999187712, 41479796736, 72236924928
Offset: 1

Views

Author

Max Alekseyev, Apr 29 2015

Keywords

Comments

There are 66 terms below 10^400 with the largest containing 46 digits.

Crossrefs

Intersection of A007602 and A128606.

Programs

  • PARI
    for(n=1,10^6, d=digits(n); p=prod(i=1,#d,d[i]); if(p && n%p==0 && p^2%n==0, print1(n,", ") )) \\ Derek Orr, Apr 29 2015

A330880 Numbers m such that m*p is divisible by m-p, where m > p > 0 and p = A007954(m) = the product of digits of m.

Original entry on oeis.org

24, 36, 45, 48, 144, 384, 624, 672, 798, 816, 3276, 3648, 4864, 5994, 7965, 18816, 56175, 83232, 98496, 177184, 199584, 275772, 344736, 377496, 784896, 879984, 1372896, 1378944, 1635795, 1886976, 2472736, 3364416, 4575375, 6595992, 9289728, 9377424, 28348416, 33247872, 36387792, 58677696
Offset: 1

Views

Author

Scott R. Shannon, May 11 2020

Keywords

Comments

Every term m is the sum of two 7-smooth numbers. Proof: Since (m-p) | m*p, we have m*p = (m - p)*k for some k > 0. Suppose m is not the sum of two 7-smooth numbers. Then m - p is not 7-smooth and so there exists a prime q > 7 such that q | (m - p). Since q doesn't divide p and q | (m - p) but (m - p) | m*p, we have q | m. But since q | m and q | (m - p) we have q | (m - (m - p)) = p, a contradiction. Q.e.d. - David A. Corneth, Jun 15 2020

Examples

			24 is a term as p = 2*4 = 8 and 24*8 = 192 is divisible by 24 - 8 = 16.
3648 is a term as p = 3*6*4*8 = 576 and 3648*576 = 2101248 is divisible by 3648-576 = 3072.
1372896 is a term as p = 1*3*7*2*8*9*6 = 18144 and 1372896*18144 = 24909825024 is divisible by 1372896 - 18144 = 1354752.
		

Crossrefs

Subsequence of A052382.

Programs

  • Mathematica
    npdQ[n_]:=Module[{p=Times@@IntegerDigits[n]},n>p>0&&Divisible[n*p,n-p]]; Select[Range[6*10^7],npdQ] (* Harvey P. Dale, Jun 14 2020 *)
  • PARI
    isok(m) = my(p=vecprod(digits(m))); p && (m-p) && !((m*p) % (m-p)); \\ Michel Marcus, May 12 2020

A334542 Numbers m such that m^2 = p^2 + k^2, with p > 0, where p = A007954(m) = the product of digits of m.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 58, 85, 375, 666, 1968, 1998, 3578, 3665, 3891, 4658, 4995, 6675, 7735, 18434, 27475, 28784, 46692, 56763, 58896, 59577, 59949, 76965, 186633, 186673, 795848, 949968, 965667, 1339575, 1587616, 1929798, 2765388, 2989584, 3674195, 4763568, 5762784, 36741656, 58988961, 134369685, 188959392
Offset: 1

Views

Author

Scott R. Shannon, May 05 2020

Keywords

Examples

			58 is a term as p = 5*8 = 40 and 58^2 = 3364 = 40^2 + 42^2.
3891 is a term as p = 3*8*9*1 = 216 and 3891^2 = 15139881 = 216^2 + 3885^2.
		

Crossrefs

Subsequence of A052382 (zeroless numbers).

Programs

  • PARI
    isok(m) = my(p=vecprod(digits(m))); p && issquare(m^2 - p^2); \\ Michel Marcus, May 06 2020

A334557 Numbers m such that m = p^2 + k^2, with p > 0, where p = A007954(m) = the product of digits of m.

Original entry on oeis.org

1, 13, 41, 61, 125, 212, 281, 613, 1156, 1424, 2225, 3232, 3316, 4113, 11125, 11281, 11525, 12816, 14913, 16317, 16441, 19125, 21284, 21625, 24128, 25216, 27521, 31525, 53125, 56116, 61321, 65161, 71325, 82116, 82217, 83521, 84313, 111812, 113125, 113625, 115336, 115681, 117125, 118372
Offset: 1

Views

Author

Scott R. Shannon, May 06 2020

Keywords

Examples

			13 is a term as p = 1*3 = 3 and 13 = 3^2 + 2^2.
281 is a term as p = 2*8*1 = 16 and 281 = 16^2 + 5^2.
118372 is a term as p = 1*1*8*3*7*2 = 336 and 118372 = 336^2 + 74^2.
		

Crossrefs

Programs

  • PARI
    isok(m) = my(p=vecprod(digits(m))); p && issquare(m - p^2); \\ Michel Marcus, May 06 2020

A334558 Numbers m such that m^2 + p^2 = k^2, with p > 0, where p = A007954(m) = the product of digits of m.

Original entry on oeis.org

429, 437, 598, 1938, 3584, 3875, 5576, 6864, 16758, 36828, 43778, 47775, 47859, 56637, 56672, 82928, 91798, 129584, 156782, 165688, 165838, 178857, 215985, 379488, 655578, 798847, 1881576, 2893337, 3918768, 4816872, 5439798, 5829795, 7558299, 9675288, 11943887
Offset: 1

Views

Author

Scott R. Shannon, May 06 2020

Keywords

Examples

			429 is a term as p = 4*2*9 = 72 and 429^2 + 72^2 = 189225 = 435^2.
16758 is a term as p = 1*6*7*5*8 = 1680 and 16758^2 + 1680^2 = 283652964 = 16842^2.
		

Crossrefs

Programs

  • PARI
    isok(m) = my(p=vecprod(digits(m))); p && issquare(m^2 + p^2); \\ Michel Marcus, May 06 2020

A334679 Numbers k such that k*p is divisible by k+p, where p > 0 and p = A007954(k) = the product of digits of k.

Original entry on oeis.org

2, 4, 6, 8, 24, 36, 63, 456, 495, 3276, 6624, 7497, 8832, 19728, 23976, 127488, 167328, 273525, 274995, 297675, 576975, 661248, 797769, 853776, 1323648, 1378272, 1491264, 1886976, 3483648, 3679263, 3787749, 4644864, 6386688, 7886592, 7888896, 12841472, 15974784, 16224768
Offset: 1

Views

Author

Scott R. Shannon, May 08 2020

Keywords

Examples

			8 is a term as p = 8 and 8*8 = 64 is divisible by 8+8 = 16.
3276 is a term as p = 3*2*7*6 = 252 and 3276*252 = 825552 is divisible by 3276+252 = 3528.
3787749 is a term as p = 3*7*8*7*7*4*9 = 296352 and 3787749*296352 = 1122506991648 is divisible by 3787749+296352 = 4084101.
		

Crossrefs

Subsequence of A052382.

Programs

  • Mathematica
    Select[Range[10^6], (p = Times @@ IntegerDigits@ #; p > 0 && Mod[# p, # + p] == 0) &] (* Giovanni Resta, May 08 2020 *)
  • PARI
    isok(m) = my(p=vecprod(digits(m))); p && !((m*p) % (m+p)); \\ Michel Marcus, May 08 2020

A340907 Numbers m without zero digits such that pod(q) = pod(k) = pod(m) where q = k + pod(k) and k = m + pod(m) where pod is the product of digits, A007954.

Original entry on oeis.org

262713, 267338, 283628, 342713, 351678, 432713, 451676, 516469, 516657, 516675, 622713, 634838, 651674, 716655, 728364, 851673, 857297, 916465, 1262713, 1267338, 1283628, 1342713, 1351678, 1432713, 1451676, 1516469, 1516657, 1516675, 1622713, 1634838, 1651674
Offset: 1

Views

Author

Bernard Schott, Jan 26 2021

Keywords

Comments

The idea of this sequence comes from a remark of Amiram Eldar in Discussion section of A327750 (m + pod(m) = k with pod(k) = pod(m)) in September 2019.
Question: is it possible to get a longer string of integers with this rule?
From David A. Corneth, Feb 01 2021: (Start)
The product of digits of a(n) is a multiple of 6. In terms below 10^10 however all products of digits of a(n) are a multiple of 36. Is that product a multiple of 36 for all a(n)?
The least term k such that k + 6 is here is k = 56516718. Are there consecutive terms that differ by less than 6? (End)

Examples

			262713 + pod(262713) = 262713 + 504 = 263217, whose product of digits is also 504, and 263217 + 504 = 263721 whose product of digits is again 504; hence, m=262713, k=263217, q=263721 and pod(m)=pod(k)=pod(q)=504, so 262713 is a term.
		

References

  • Roman Fedorov, Alexei Belov, Alexander Kovaldzhi, and Ivan Yashchenko, Moscow-Mathematical Olympiads, 2000-2005, Level A, Problem 2, 2003; MSRI, 2011, p. 15 and 97.

Crossrefs

Subsequence of A327750.

Programs

  • Mathematica
    pod[n_] := Times @@ IntegerDigits[n]; seqQ[n_] := Module[{p = pod[n], k, q}, k = n + p; q = k + pod[k]; p > 0 && Equal @@ {p, pod[k], pod[q]}]; Select[Range[2*10^6], seqQ] (* Amiram Eldar, Jan 26 2021 *)
  • PARI
    isok(m) = my(pm=vecprod(digits(m)), k=m+pm, pk=vecprod(digits(k)), q=k+pk, pq=vecprod(digits(q))); pm && (pm==pk) && (pk==pq); \\ Michel Marcus, Jan 26 2021

Extensions

Terms from Amiram Eldar, Jan 26 2021
Showing 1-10 of 315 results. Next