A330880 Numbers m such that m*p is divisible by m-p, where m > p > 0 and p = A007954(m) = the product of digits of m.
24, 36, 45, 48, 144, 384, 624, 672, 798, 816, 3276, 3648, 4864, 5994, 7965, 18816, 56175, 83232, 98496, 177184, 199584, 275772, 344736, 377496, 784896, 879984, 1372896, 1378944, 1635795, 1886976, 2472736, 3364416, 4575375, 6595992, 9289728, 9377424, 28348416, 33247872, 36387792, 58677696
Offset: 1
Examples
24 is a term as p = 2*4 = 8 and 24*8 = 192 is divisible by 24 - 8 = 16. 3648 is a term as p = 3*6*4*8 = 576 and 3648*576 = 2101248 is divisible by 3648-576 = 3072. 1372896 is a term as p = 1*3*7*2*8*9*6 = 18144 and 1372896*18144 = 24909825024 is divisible by 1372896 - 18144 = 1354752.
Links
- David A. Corneth, Table of n, a(n) for n = 1..152 (terms <= 10^22; first 82 terms from Giovanni Resta)
Programs
-
Mathematica
npdQ[n_]:=Module[{p=Times@@IntegerDigits[n]},n>p>0&&Divisible[n*p,n-p]]; Select[Range[6*10^7],npdQ] (* Harvey P. Dale, Jun 14 2020 *)
-
PARI
isok(m) = my(p=vecprod(digits(m))); p && (m-p) && !((m*p) % (m-p)); \\ Michel Marcus, May 12 2020
Comments