cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014306 a(n) = 0 if n of form m(m+1)(m+2)/6, otherwise 1.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 0

Views

Author

Keywords

Comments

a(A145397(n))=1; a(A000292(n))=0; a(n)=1-A023533(n). - Reinhard Zumkeller, Oct 14 2008
Characteristic function of A145397.

Examples

			From _David A. Corneth_, Oct 01 2018: (Start)
For n = 0, floor((6*0-1) ^ (1/3)) = -1. binomial(-1 + 2, 3) = n so a(0) = 0.
For n = 10, floor((6*n-1) ^ (1/3)) = 3. binomial(3 + 2, 3) = n so a(10) = 0.
For n = 11, floor((6*n-1) ^ (1/3)) = 3. binomial(3 + 2, 3) != n so a(11) = 1. (End)
		

Crossrefs

Programs

  • PARI
    A014306(n) = { my(k=0); while(binomial(k+2,3)Antti Karttunen, Sep 30 2018
    
  • PARI
    a(n) = if(n==0, return(0)); my(t = sqrtnint(6*n-1, 3)); binomial(t+2, 3) != n \\ David A. Corneth, Oct 01 2018
    
  • PARI
    first(n) = my(res = vector(n+1, i, 1), ov = nv = [1,2,1,0]); while(nv[4]<=n, res[nv[4]+1] = 0; for(i = 2, 4, nv[i] = ov[i-1] + ov[i]); ov = nv); res \\ David A. Corneth, Oct 01 2018

Extensions

Data section extended up to a(120) by Antti Karttunen, Sep 30 2018