A014333 Three-fold exponential convolution of Catalan numbers with themselves.
1, 3, 12, 57, 306, 1806, 11508, 78147, 559962, 4201038, 32792472, 264946446, 2206077804, 18860908644, 165050642736, 1474389557739, 13413397423482, 124030117316238, 1163661348170328, 11060842687616610, 106377560784576612, 1034009073326130876
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..930
Programs
-
Magma
m:=40; R
:=PowerSeriesRing(Rationals(), m); f:= func< x | (&+[(k+1-x)*x^(2*k)/(Factorial(k)*Factorial(k+1)): k in [0..m+2]]) >; Coefficients(R!(Laplace( Exp(6*x)*( f(x) )^3 ))); // G. C. Greubel, Jan 06 2023 -
Mathematica
nmax = 20; CoefficientList[Series[E^(6*x)*(BesselI[0, 2*x] - BesselI[1, 2*x])^3, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 13 2017 *)
-
SageMath
m=40 def f(x): return sum((k+1-x)*x^(2*k)/(factorial(k)*factorial(k+1)) for k in range(m+2)) def A014333_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(6*x)*( f(x) )^3 ).egf_to_ogf().list() A014333_list(m) # G. C. Greubel, Jan 06 2023
Formula
E.g.f.: exp(6*x)*(BesselI(0,2*x) - BesselI(1,2*x))^3. - Ilya Gutkovskiy, Nov 01 2017
From Vaclav Kotesovec, Nov 13 2017: (Start)
Recurrence: (n+1)*(n+2)*(n+3)*a(n) = 4*(6*n^3 + 13*n^2 + 2*n - 3)*a(n-1) - 4*(n-1)*(44*n^2 - 16*n - 21)*a(n-2) + 192*(n-2)*(n-1)*(2*n - 3)*a(n-3).
a(n) ~ 2^(2*n) * 3^(n + 9/2) / (Pi^(3/2) * n^(9/2)). (End)