cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014333 Three-fold exponential convolution of Catalan numbers with themselves.

Original entry on oeis.org

1, 3, 12, 57, 306, 1806, 11508, 78147, 559962, 4201038, 32792472, 264946446, 2206077804, 18860908644, 165050642736, 1474389557739, 13413397423482, 124030117316238, 1163661348170328, 11060842687616610, 106377560784576612, 1034009073326130876
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=40;
    R:=PowerSeriesRing(Rationals(), m);
    f:= func< x | (&+[(k+1-x)*x^(2*k)/(Factorial(k)*Factorial(k+1)): k in [0..m+2]]) >;
    Coefficients(R!(Laplace( Exp(6*x)*( f(x) )^3 ))); // G. C. Greubel, Jan 06 2023
    
  • Mathematica
    nmax = 20; CoefficientList[Series[E^(6*x)*(BesselI[0, 2*x] - BesselI[1, 2*x])^3, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 13 2017 *)
  • SageMath
    m=40
    def f(x): return sum((k+1-x)*x^(2*k)/(factorial(k)*factorial(k+1)) for k in range(m+2))
    def A014333_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(6*x)*( f(x) )^3 ).egf_to_ogf().list()
    A014333_list(m) # G. C. Greubel, Jan 06 2023

Formula

E.g.f.: exp(6*x)*(BesselI(0,2*x) - BesselI(1,2*x))^3. - Ilya Gutkovskiy, Nov 01 2017
From Vaclav Kotesovec, Nov 13 2017: (Start)
Recurrence: (n+1)*(n+2)*(n+3)*a(n) = 4*(6*n^3 + 13*n^2 + 2*n - 3)*a(n-1) - 4*(n-1)*(44*n^2 - 16*n - 21)*a(n-2) + 192*(n-2)*(n-1)*(2*n - 3)*a(n-3).
a(n) ~ 2^(2*n) * 3^(n + 9/2) / (Pi^(3/2) * n^(9/2)). (End)