cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A014330 Exponential convolution of Catalan numbers with themselves.

Original entry on oeis.org

1, 2, 6, 22, 92, 424, 2108, 11134, 61748, 356296, 2123720, 13002840, 81417520, 519550880, 3369559864, 22161337742, 147544048324, 992923683912, 6746101933304, 46226667046360, 319199694771696, 2219445498261152, 15529758665102416, 109291258152550712
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A014330:= func< n | (&+[Binomial(n,k)*Catalan(k)*Catalan(n-k): k in [0..n]]) >;
    [A014330(n): n in [0..40]]; // G. C. Greubel, Jan 06 2023
    
  • Mathematica
    Table[Sum[Binomial[n, k]*Binomial[2*k, k]/(k+1)*Binomial[2*n-2*k, n-k]/(n-k+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Feb 25 2014 *)
  • PARI
    A014330(n)=sum(k=0,n,binomial(n,k)*A000108(k)*A000108(n-k))  \\ M. F. Hasler, Jan 13 2012
    
  • SageMath
    def c(n): return catalan_number(n)
    def A014330(n): return sum( binomial(n,k)*c(k)*c(n-k) for k in range(n+1))
    [A014330(n) for n in range(41)] # G. C. Greubel, Jan 06 2023

Formula

From Vladeta Jovovic, Jan 01 2004: (Start)
E.g.f.: exp(4*x)*(BesselI(0, 2*x) - BesselI(1, 2*x))^2.
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*k, k)/(k+1)*binomial(2*n-2*k, n-k)/(n-k+1).
a(n) = 4^n*Sum_{k=0..n} (-4)^(-k)*binomial(n, k)*binomial(k, floor(k/2))*binomial(k+1, floor((k+1)/2)).
a(n) = binomial(2*n, n)/(n+1)*hypergeometric3F2([-n-1, -n, 1/2], [2, 1/2-n], -1). (End)
(n + 1)*(n + 2)*a(n) = 4*(3*n^2 + n - 1)*a(n - 1) - 32*(n - 1)^2*a(n - 2). - Vladeta Jovovic, Jul 15 2004
a(n) = Sum_{k=0..n} binomial(n,k)*A000108(k)*A000108(n-k). - Philippe Deléham, Aug 23 2006
a(n) = (4*A053175(n) - A053175(n+1)/4) / ((n+2)*2^n). - Mark van Hoeij, Jul 02 2010
G.f.: (1-6*x)*hypergeometric2F1([1/2, 1/2],[2],16*x^2/(4*x-1)^2)/(2*x*(4*x-1)) - x*(8*x-1)*hypergeometric2F1([3/2, 3/2],[3],16*x^2/(4*x-1)^2)/(4*x-1)^3 + 1/(2*x). - Mark van Hoeij, Oct 25 2011
E.g.f.: hypergeometric1F1([1/2],[2],4*x)^2, coinciding with the above given e.g.f. - Wolfdieter Lang, Jan 13 2012
a(n) ~ 8^(n+1) / (Pi*n^3). - Vaclav Kotesovec, Feb 25 2014

Extensions

More terms from Vincenzo Librandi, Feb 27 2014

A294498 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(2*k*x)*(BesselI(0,2*x) - BesselI(1,2*x))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 5, 0, 1, 4, 12, 22, 14, 0, 1, 5, 20, 57, 92, 42, 0, 1, 6, 30, 116, 306, 424, 132, 0, 1, 7, 42, 205, 752, 1806, 2108, 429, 0, 1, 8, 56, 330, 1550, 5328, 11508, 11134, 1430, 0, 1, 9, 72, 497, 2844, 12730, 40632, 78147, 61748, 4862, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 01 2017

Keywords

Comments

A(n,k) is the k-fold exponential convolution of Catalan numbers with themselves, evaluated at n.

Examples

			E.g.f. of column k: A_k(x) = 1 + k*x/1! +  k*(k + 1)*x^2/2! + k*(k^2 + 3*k + 1)*x^3/3! + k^2*(k^2 + 6*k + 7)*x^4/4! + k*(k^4 + 10*k^3 + 25*k^2 + 10*k - 4)*x^5/5! + ...
Square array begins:
  1,   1,    1,     1,     1,      1,  ...
  0,   1,    2,     3,     4,      5,  ...
  0,   2,    6,    12,    20,     30,  ...
  0,   5,   22,    57,   116,    205,  ...
  0,  14,   92,   306,   752,   1550,  ...
  0,  42,  424,  1806,  5328,  12730,  ...
		

Crossrefs

Columns k=0..3 give A000007, A000108, A014330, A014333.
Rows n=0..2 give A000012, A001477, A002378.
Main diagonal gives A294511.

Programs

  • Maple
    C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    A:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, C(n),
          (h-> add(binomial(n, j)*A(j, h)*A(n-j, k-h), j=0..n))(iquo(k, 2))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Jan 06 2023
  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[2 k x] (BesselI[0, 2 x] - BesselI[1, 2 x])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: exp(2*k*x)*(BesselI(0,2*x) - BesselI(1,2*x))^k.
Showing 1-2 of 2 results.