A204452
A014330 - A203577. Difference between the exponential convolution of A000108 (Catalan) with itself and the corresponding exponential half-convolution.
Original entry on oeis.org
0, 1, 2, 11, 34, 212, 804, 5567, 24014, 178148, 839596, 6501420, 32658872, 259775440, 1368965576, 11080668871, 60613092662, 496461841956, 2798385807012, 23113333523180, 133539494791000, 1109722749130576, 6545965568001272
Offset: 0
With A000108 = {1, 1, 2, 5, 14, 42,...}
a(4) = 4*5*1 + 1*14*1 = 34.
a(5) = 10*5*2 + 5*14*1 + 1*42*1 = 212.
A014333
Three-fold exponential convolution of Catalan numbers with themselves.
Original entry on oeis.org
1, 3, 12, 57, 306, 1806, 11508, 78147, 559962, 4201038, 32792472, 264946446, 2206077804, 18860908644, 165050642736, 1474389557739, 13413397423482, 124030117316238, 1163661348170328, 11060842687616610, 106377560784576612, 1034009073326130876
Offset: 0
-
m:=40;
R:=PowerSeriesRing(Rationals(), m);
f:= func< x | (&+[(k+1-x)*x^(2*k)/(Factorial(k)*Factorial(k+1)): k in [0..m+2]]) >;
Coefficients(R!(Laplace( Exp(6*x)*( f(x) )^3 ))); // G. C. Greubel, Jan 06 2023
-
nmax = 20; CoefficientList[Series[E^(6*x)*(BesselI[0, 2*x] - BesselI[1, 2*x])^3, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 13 2017 *)
-
m=40
def f(x): return sum((k+1-x)*x^(2*k)/(factorial(k)*factorial(k+1)) for k in range(m+2))
def A014333_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(6*x)*( f(x) )^3 ).egf_to_ogf().list()
A014333_list(m) # G. C. Greubel, Jan 06 2023
A203577
Exponential (or binomial) half-convolution of the sequence A000108 (Catalan) with itself.
Original entry on oeis.org
1, 1, 4, 11, 58, 212, 1304, 5567, 37734, 178148, 1284124, 6501420, 48758648, 259775440, 2000594288, 11080668871, 86930955662, 496461841956, 3947716126292, 23113333523180, 185660199980696, 1109722749130576, 8983793097101144, 54645629076275356, 445109373450545608, 2748480598104423952
Offset: 0
With Catalan = A000108 = {1, 1, 2, 5, 14, 42, ...}
a(4) = 1*1*14 + 4*1*5 + 6*2*2 = 58.
a(5) = 1*1*42 + 5*1*14 + 10*2*5 = 212.
-
a[n_] := Sum[ Binomial[n, k]*CatalanNumber[k]*CatalanNumber[n - k], {k, 0, n/2}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 21 2013 *)
-
hat(b,n) = sum(k=0,n\2,binomial(n,k)*b(k)*b(n-k))
A203577(n)=hat(A000108,n) \\ where A000108(n)=(2*n)!/n!/(n+1)! \\ - M. F. Hasler, Jan 13 2012
A277220
Exponential convolution of Fibonacci (A000045) and Catalan (A000108) numbers.
Original entry on oeis.org
0, 1, 3, 11, 43, 180, 790, 3590, 16745, 79705, 385615, 1890747, 9375216, 46931897, 236873261, 1204089630, 6159064015, 31678706490, 163739008070, 850051218980, 4430529313065, 23175017046351, 121617754070653, 640122809255716, 3378402106118508, 17875011275340275
Offset: 0
-
[(&+[Binomial(n,k)*Fibonacci(k)*Catalan(n-k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Oct 22 2018
-
Table[Sum[Binomial[n, k] Fibonacci[k] CatalanNumber[n - k], {k, 0, n}], {n, 0, 30}] (* or *)
Round@Table[(GoldenRatio^n Hypergeometric2F1[1/2, -n, 2, -4/GoldenRatio] - (-GoldenRatio)^(-n) Hypergeometric2F1[1/2, -n, 2, 4 GoldenRatio])/Sqrt[5], {n, 0, 30}] (* Round is equivalent to FullSimplify here, but is much faster *)
-
for(n=0, 30, print1(sum(k=0,n, binomial(n,k)*fibonacci(k)* binomial(2*n-2*k,n-k)/(n-k+1)), ", ")) \\ G. C. Greubel, Oct 22 2018
A294498
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(2*k*x)*(BesselI(0,2*x) - BesselI(1,2*x))^k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 5, 0, 1, 4, 12, 22, 14, 0, 1, 5, 20, 57, 92, 42, 0, 1, 6, 30, 116, 306, 424, 132, 0, 1, 7, 42, 205, 752, 1806, 2108, 429, 0, 1, 8, 56, 330, 1550, 5328, 11508, 11134, 1430, 0, 1, 9, 72, 497, 2844, 12730, 40632, 78147, 61748, 4862, 0
Offset: 0
E.g.f. of column k: A_k(x) = 1 + k*x/1! + k*(k + 1)*x^2/2! + k*(k^2 + 3*k + 1)*x^3/3! + k^2*(k^2 + 6*k + 7)*x^4/4! + k*(k^4 + 10*k^3 + 25*k^2 + 10*k - 4)*x^5/5! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 6, 12, 20, 30, ...
0, 5, 22, 57, 116, 205, ...
0, 14, 92, 306, 752, 1550, ...
0, 42, 424, 1806, 5328, 12730, ...
-
C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, C(n),
(h-> add(binomial(n, j)*A(j, h)*A(n-j, k-h), j=0..n))(iquo(k, 2))))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Jan 06 2023
-
Table[Function[k, n! SeriesCoefficient[Exp[2 k x] (BesselI[0, 2 x] - BesselI[1, 2 x])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
A277251
Exponential convolution of Lucas (A000032) and Catalan (A000108) numbers.
Original entry on oeis.org
2, 3, 9, 29, 107, 430, 1840, 8230, 38015, 179873, 867079, 4242111, 21006358, 105072063, 530058079, 2693632580, 13775807415, 70847283680, 366167521240, 1900884870494, 9907318315587, 51822028122623, 271949090063769, 1431369293422604, 7554372307564282
Offset: 0
-
Table[Sum[Binomial[n, k] LucasL[k] CatalanNumber[n - k], {k, 0, n}], {n, 0,
30}] (* or *)
Round@Table[GoldenRatio^n Hypergeometric2F1[1/2, -n, 2, -4/GoldenRatio] + (-GoldenRatio)^(-n) Hypergeometric2F1[1/2, -n, 2, 4 GoldenRatio], {n, 0, 30}] (* Round is equivalent to FullSimplify here, but is much faster *)
Showing 1-6 of 6 results.
Comments