A014344 Four-fold convolution of primes with themselves.
16, 96, 376, 1160, 3121, 7532, 16754, 34796, 68339, 127952, 229956, 398688, 669781, 1094076, 1742710, 2713604, 4139111, 6195712, 9115304, 13199072, 18833449, 26509260, 36843322, 50603884, 68740107, 92414192, 123039628, 162323200, 212312453, 275448380
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k=1, ithprime(n+1), add(b(j, floor(k/2))*b(n-j, ceil(k/2)), j=0..n)) end: a:= n-> b(n, 4): seq(a(n), n=0..35); # Alois P. Heinz, Mar 10 2018
-
Mathematica
b[n_, k_] := b[n, k] = If[k==1, Prime[n+1], Sum[b[j, Floor[k/2]] b[n-j, Ceiling[k/2]], {j, 0, n}]]; a[n_] := b[n, 4]; a /@ Range[0, 35] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
-
PARI
my(N = 50, x = 'x + O('x^N)); Vec(((1/x)*sum(k=1, N, prime(k)*x^k))^4) \\ Michel Marcus, Mar 10 2018
Formula
G.f.: ((1/x)*Sum_{k>=1} prime(k)*x^k)^4. - Ilya Gutkovskiy, Mar 10 2018