cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014344 Four-fold convolution of primes with themselves.

Original entry on oeis.org

16, 96, 376, 1160, 3121, 7532, 16754, 34796, 68339, 127952, 229956, 398688, 669781, 1094076, 1742710, 2713604, 4139111, 6195712, 9115304, 13199072, 18833449, 26509260, 36843322, 50603884, 68740107, 92414192, 123039628, 162323200, 212312453, 275448380
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=4 of A340991.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=1, ithprime(n+1),
          add(b(j, floor(k/2))*b(n-j, ceil(k/2)), j=0..n))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=0..35);  # Alois P. Heinz, Mar 10 2018
  • Mathematica
    b[n_, k_] := b[n, k] = If[k==1, Prime[n+1], Sum[b[j, Floor[k/2]] b[n-j, Ceiling[k/2]], {j, 0, n}]];
    a[n_] := b[n, 4];
    a /@ Range[0, 35] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
  • PARI
    my(N = 50, x = 'x + O('x^N)); Vec(((1/x)*sum(k=1, N, prime(k)*x^k))^4) \\ Michel Marcus, Mar 10 2018

Formula

G.f.: ((1/x)*Sum_{k>=1} prime(k)*x^k)^4. - Ilya Gutkovskiy, Mar 10 2018