A014352 Four-fold exponential convolution of primes with themselves.
16, 96, 592, 3680, 22888, 141776, 872296, 5320160, 32116168, 191634736, 1128985544, 6560592320, 37577101096, 212032652336, 1178400630472, 6450745788064, 34795044655624, 185041871051312, 971039709861320, 5033044804735360, 25793494764933224, 130834363186542320
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k=1, ithprime(n+1), add(b(j, floor(k/2))* b(n-j, ceil(k/2))*binomial(n, j), j=0..n)) end: a:= n-> b(n, 4): seq(a(n), n=0..30); # Alois P. Heinz, Mar 10 2018
-
Mathematica
b[n_, k_] := b[n, k] = If[k == 1, Prime[n + 1], Sum[b[j, Floor[k/2]] b[n - j, Ceiling[k/2]] Binomial[n, j], {j, 0, n}]]; a[n_] := b[n, 4]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
Formula
E.g.f.: (Sum_{k>=0} prime(k+1)*x^k/k!)^4. - Ilya Gutkovskiy, Mar 10 2018