cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A014345 Exponential convolution of primes with themselves.

Original entry on oeis.org

4, 12, 38, 118, 362, 1082, 3166, 8910, 24426, 64226, 165262, 413418, 1021362, 2490686, 6009150, 14401410, 34098042, 80281962, 187356750, 432549154, 992941250, 2256712462, 5088826238, 11408805862, 25425739346, 56383362854, 124565557898, 274390550594
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [&+[NthPrime(k+1)*NthPrime(n-k+1)*Binomial(n, k): k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Jun 07 2019
    
  • Maple
    a:= proc(n) option remember; (p-> add(
          p(j+1)*p(n-j+1)*binomial(n, j), j=0..n))(ithprime)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 10 2018
  • Mathematica
    a[n_] := Sum[Prime[j + 1] Prime[n - j + 1] Binomial[n, j], {j, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 05 2018, from Maple *)
  • PARI
    {a(n) = sum(j=0,n, binomial(n,j)*prime(j+1)*prime(n-j+1))}; \\ G. C. Greubel, Jun 07 2019
    
  • Sage
    [sum(binomial(n,j)*nth_prime(j+1)*nth_prime(n-j+1) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 07 2019

Formula

E.g.f.: (Sum_{k>=0} prime(k+1)*x^k/k!)^2. - Ilya Gutkovskiy, Mar 10 2018
a(n) = Sum_{j=0..n} binomial(n,j)*prime(j+1)*prime(n-j+1). - G. C. Greubel, Jun 07 2019

A014347 Three-fold exponential convolution of primes with themselves.

Original entry on oeis.org

8, 36, 168, 786, 3660, 16866, 76752, 343914, 1514724, 6543066, 27699960, 114793386, 466078116, 1854554490, 7248419496, 27869755866, 105687130980, 395978680266, 1468425404328, 5396913313866, 19675676962308, 71219609783946, 256052236665192, 914773982356902
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=1,
          ithprime(n+1), add(b(j, floor(k/2))*
          b(n-j, ceil(k/2))*binomial(n, j), j=0..n))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 10 2018
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 1, Prime[n + 1], Sum[b[j, Floor[k/2]] b[n - j, Ceiling[k/2]] Binomial[n, j], {j, 0, n}]];
    a[n_] := b[n, 3];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)

Formula

E.g.f.: (Sum_{k>=0} prime(k+1)*x^k/k!)^3. - Ilya Gutkovskiy, Mar 10 2018

A014351 Four-fold exponential convolution of primes with themselves (divided by 8).

Original entry on oeis.org

2, 12, 74, 460, 2861, 17722, 109037, 665020, 4014521, 23954342, 141123193, 820074040, 4697137637, 26504081542, 147300078809, 806343223508, 4349380581953, 23130233881414, 121379963732665, 629130600591920, 3224186845616653, 16354295398317790, 82187373706636505
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A014352.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=1, ithprime(n+1), add(
          b(j, floor(k/2))*b(n-j, ceil(k/2))*binomial(n, j), j=0..n))
        end:
    a:= n-> b(n, 4)/8:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 07 2018
  • Mathematica
    b[n_, k_] := b[n, k] = If[k==1, Prime[n+1], Sum[b[j, Floor[k/2]] b[n-j, Ceiling[k/2]] Binomial[n, j], {j, 0, n}]];
    a[n_] := b[n, 4]/8;
    a /@ Range[0, 30] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)

A300631 a(n) = n! * [x^n] (Sum_{k=0..n} prime(k+1)*x^k/k!)^n.

Original entry on oeis.org

1, 3, 38, 786, 22888, 857800, 39316464, 2130380560, 133222474368, 9443111340672, 748168002970880, 65520799156209408, 6284786657494483968, 655287035001111884800, 73792143714173551392768, 8925528145554323771934720, 1154065253662722209679572992, 158849709577131169400652988416
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 10 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of e.g.f. (Sum_{k>=0} prime(k+1)*x^k/k!)^n begins:
n = 0:  (1),   0,     0,      0,       0,        0,  ... (A000007)
n = 1:   2,   (3),    5,      7,      11,       13,  ... (A000040, with offset 0)
n = 2:   4,   12,   (38),   118,     362,     1082,  ... (A014345)
n = 3:   8,   36,   168,   (786),   3660,    16866,  ... (A014347)
n = 4:  16,   96,   592,   3680,  (22888),  141776,  ... (A014352)
n = 5:  32,  240,  1840,  14240,  110560,  (857800), ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=1, ithprime(n+1), add(
          b(j, floor(k/2))*b(n-j, ceil(k/2))*binomial(n, j), j=0..n))
        end:
    a:= n-> `if`(n=0, 1, b(n$2)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 10 2018
  • Mathematica
    Table[n! SeriesCoefficient[Sum[Prime[k + 1] x^k/k!, {k, 0, n}]^n, {x, 0, n}], {n, 0, 17}]
Showing 1-4 of 4 results.