cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A014347 Three-fold exponential convolution of primes with themselves.

Original entry on oeis.org

8, 36, 168, 786, 3660, 16866, 76752, 343914, 1514724, 6543066, 27699960, 114793386, 466078116, 1854554490, 7248419496, 27869755866, 105687130980, 395978680266, 1468425404328, 5396913313866, 19675676962308, 71219609783946, 256052236665192, 914773982356902
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=1,
          ithprime(n+1), add(b(j, floor(k/2))*
          b(n-j, ceil(k/2))*binomial(n, j), j=0..n))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 10 2018
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 1, Prime[n + 1], Sum[b[j, Floor[k/2]] b[n - j, Ceiling[k/2]] Binomial[n, j], {j, 0, n}]];
    a[n_] := b[n, 3];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)

Formula

E.g.f.: (Sum_{k>=0} prime(k+1)*x^k/k!)^3. - Ilya Gutkovskiy, Mar 10 2018

A014352 Four-fold exponential convolution of primes with themselves.

Original entry on oeis.org

16, 96, 592, 3680, 22888, 141776, 872296, 5320160, 32116168, 191634736, 1128985544, 6560592320, 37577101096, 212032652336, 1178400630472, 6450745788064, 34795044655624, 185041871051312, 971039709861320, 5033044804735360, 25793494764933224, 130834363186542320
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=1,
          ithprime(n+1), add(b(j, floor(k/2))*
          b(n-j, ceil(k/2))*binomial(n, j), j=0..n))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 10 2018
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 1, Prime[n + 1], Sum[b[j, Floor[k/2]] b[n - j, Ceiling[k/2]] Binomial[n, j], {j, 0, n}]];
    a[n_] := b[n, 4];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)

Formula

E.g.f.: (Sum_{k>=0} prime(k+1)*x^k/k!)^4. - Ilya Gutkovskiy, Mar 10 2018

A333371 Exponential convolution of primorial numbers (A002110) with themselves.

Original entry on oeis.org

1, 4, 20, 132, 1116, 12420, 171300, 2884980, 56674380, 1289511300, 34769949060, 1063909626780, 37255008811020, 1470406699982220, 63114539746598340, 2936218980067393020, 150241360192861037100, 8497891914008911514100, 514514062115556069627060
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 17 2020

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, ithprime(n)*p(n-1)) end:
    a:= n-> add(p(i)*p(n-i)*binomial(n, i), i=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 17 2020
  • Mathematica
    primorial[n_] := Product[Prime[k], {k, 1, n}]; a[n_] := Sum[Binomial[n, k] primorial[k] primorial[n - k], {k, 0, n}]; Table[a[n], {n, 0, 18}]

Formula

E.g.f.: (Sum_{k>=0} prime(k)# * x^k / k!)^2, where prime()# = A002110.
a(n) = Sum_{k=0..n} binomial(n,k) * prime(k)# * prime(n-k)#.

A014346 Exponential convolution of primes with themselves (divided by 2).

Original entry on oeis.org

2, 6, 19, 59, 181, 541, 1583, 4455, 12213, 32113, 82631, 206709, 510681, 1245343, 3004575, 7200705, 17049021, 40140981, 93678375, 216274577, 496470625, 1128356231, 2544413119, 5704402931, 12712869673, 28191681427, 62282778949, 137195275297, 300840332783
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A014345.

Formula

a(n) = A014345(n)/2.

A300631 a(n) = n! * [x^n] (Sum_{k=0..n} prime(k+1)*x^k/k!)^n.

Original entry on oeis.org

1, 3, 38, 786, 22888, 857800, 39316464, 2130380560, 133222474368, 9443111340672, 748168002970880, 65520799156209408, 6284786657494483968, 655287035001111884800, 73792143714173551392768, 8925528145554323771934720, 1154065253662722209679572992, 158849709577131169400652988416
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 10 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of e.g.f. (Sum_{k>=0} prime(k+1)*x^k/k!)^n begins:
n = 0:  (1),   0,     0,      0,       0,        0,  ... (A000007)
n = 1:   2,   (3),    5,      7,      11,       13,  ... (A000040, with offset 0)
n = 2:   4,   12,   (38),   118,     362,     1082,  ... (A014345)
n = 3:   8,   36,   168,   (786),   3660,    16866,  ... (A014347)
n = 4:  16,   96,   592,   3680,  (22888),  141776,  ... (A014352)
n = 5:  32,  240,  1840,  14240,  110560,  (857800), ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=1, ithprime(n+1), add(
          b(j, floor(k/2))*b(n-j, ceil(k/2))*binomial(n, j), j=0..n))
        end:
    a:= n-> `if`(n=0, 1, b(n$2)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 10 2018
  • Mathematica
    Table[n! SeriesCoefficient[Sum[Prime[k + 1] x^k/k!, {k, 0, n}]^n, {x, 0, n}], {n, 0, 17}]

A316186 Expansion of e.g.f. P(P(x)), where P(x) = Sum_{k>=1} prime(k)*x^k/k!.

Original entry on oeis.org

4, 18, 104, 687, 5064, 40934, 358083, 3346832, 33123000, 345219919, 3777134694, 43291666298, 518855171115, 6491738816768, 84656365477452, 1148895613585775, 16201725990730392, 237030534528945348, 3591398122456079285, 56254812062478841340, 909319044063443870702
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 26 2018

Keywords

Comments

Self-composition of e.g.f. of A000040 (prime numbers).

Examples

			E.g.f.: A(x) = 4*x + 18*x^2/2! + 104*x^3/3! + 687*x^4/4! + 5064*x^5/5! + 40934*x^6/6! + ...
		

Crossrefs

Programs

  • Mathematica
    p[x_] := p[x] = Sum[Prime[k] x^k/k!, {k, 21}]; a[n_] := a[n] = SeriesCoefficient[p[p[x]], {x, 0, n}]; Table[n! a[n], {n, 21}]
Showing 1-6 of 6 results.