cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014371 Number of trivalent connected simple graphs with 2n nodes and girth at least 4.

Original entry on oeis.org

1, 0, 0, 1, 2, 6, 22, 110, 792, 7805, 97546, 1435720, 23780814, 432757568, 8542471494, 181492137812, 4127077143862
Offset: 0

Views

Author

Keywords

Comments

The null graph on 0 vertices is vacuously connected and 3-regular; since it is acyclic, it has infinite girth. [Jason Kimberley, Jan 29 2011]

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 647.

Crossrefs

Contribution from Jason Kimberley, Jun 28 2010 and Jan 29 2011: (Start)
3-regular simple graphs with girth at least 4: this sequence (connected), A185234 (disconnected), A185334 (not necessarily connected).
Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: A185114 (k=2), this sequence (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), A181153 (k=7), A181154 (k=8), A181170 (k=9).
Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), this sequence (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A002851 = A@002851;
    A006923 = A@006923;
    a[n_] := A002851[[n + 1]] - A006923[[n + 1]];
    a /@ Range[0, 16] (* Jean-François Alcover, Jan 27 2020 *)

Extensions

Terms a(14) and a(15) appended, from running Meringer's GENREG for 4.2 and 93.2 processor days at U. Newcastle, by Jason Kimberley on Jun 28 2010.
a(16), from House of Graphs, by Jan Goedgebeur et al., added by Jason Kimberley, Feb 15 2011