A014381 Number of connected regular graphs of degree 9 with 2n nodes.
1, 0, 0, 0, 0, 1, 9, 88193, 113314233813, 281341168330848874, 1251392240942040452186674, 9854603833337765095207342173991, 134283276101750327256393048776114352985
Offset: 0
Examples
The null graph on 0 vertices is vacuously connected and 9-regular; since it is acyclic, it has infinite girth. - _Jason Kimberley_, Feb 10 2011
References
- CRC Handbook of Combinatorial Designs, 1996, p. 648.
- I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
Links
- Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
- M. Meringer, Tables of Regular Graphs
- Eric Weisstein's World of Mathematics, Regular Graph.
Crossrefs
Connected regular simple graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), this sequence (k=9), A014382 (k=10), A014384 (k=11).
9-regular simple graphs: this sequence (connected), A185293 (disconnected).
Connected 9-regular simple graphs with girth at least g: this sequence (g=3), A181170 (g=4).
Connected 9-regular simple graphs with girth exactly g: A184993 (g=3).
Extensions
a(8) appended using the symmetry of A051031 by Jason Kimberley, Sep 25 2009
a(9)-a(10) from Andrew Howroyd, Mar 13 2020
a(10) corrected and a(11)-a(12) from Andrew Howroyd, May 19 2020
Comments