cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014395 Number of multigraphs with 5 nodes and n edges.

Original entry on oeis.org

1, 1, 3, 7, 17, 35, 76, 149, 291, 539, 974, 1691, 2874, 4730, 7620, 11986, 18485, 27944, 41550, 60744, 87527, 124338, 174403, 241650, 331153, 448987, 602853, 801943, 1057615, 1383343, 1795578, 2313595, 2960656, 3763879, 4755505, 5972927, 7460196, 9267980
Offset: 0

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 650.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[PairGroupIndex[SymmetricGroup[5],s]/.Table[s[i]->1/(1-x^i),{i,1,Binomial[5,2]}],{x,0,30}],x] (* Geoffrey Critzer, Oct 14 2012 *)
  • PARI
    concat([1], G(5, 40)) \\ See A191646 for G. - Andrew Howroyd, Mar 15 2020

Formula

G.f.: (x^21 + x^20 + 5*x^19 + 8*x^18 + 14*x^17 + 22*x^16 + 32*x^15 + 40*x^14 + 39*x^13 + 47*x^12 + 36*x^11 + 36*x^10 + 25*x^9 + 21*x^8 + 12*x^7 + 11*x^6 + 4*x^5 + 4*x^4 + x^3 + x^2 - x + 1)/((x^6 - 1)*(x^5 - 1)^2*(x^4 - 1)^2*(x^3 - 1)^2*(x - 1)^3*(x + 1)).

Extensions

More terms from Vladeta Jovovic, Dec 23 1999