A014430 Subtract 1 from Pascal's triangle, read by rows.
1, 2, 2, 3, 5, 3, 4, 9, 9, 4, 5, 14, 19, 14, 5, 6, 20, 34, 34, 20, 6, 7, 27, 55, 69, 55, 27, 7, 8, 35, 83, 125, 125, 83, 35, 8, 9, 44, 119, 209, 251, 209, 119, 44, 9, 10, 54, 164, 329, 461, 461, 329, 164, 54, 10, 11, 65, 219, 494, 791, 923, 791, 494, 219, 65, 11
Offset: 0
Examples
Triangle begins: 1; 2, 2; 3, 5, 3; 4, 9, 9, 4; 5, 14, 19, 14, 5; 6, 20, 34, 34, 20, 6; 7, 27, 55, 69, 55, 27, 7; 8, 35, 83, 125, 125, 83, 35, 8;
Links
- Reinhard Zumkeller, Rows n=0..100 of triangle, flattened
Crossrefs
Programs
-
Haskell
a014430 n k = a014430_tabl !! n !! k a014430_row n = a014430_tabl !! n a014430_tabl = map (init . tail) $ drop 2 a014473_tabl -- Reinhard Zumkeller, Apr 10 2012
-
Magma
[Binomial(n+2,k+1)-1: k in [0..n], n in [0..13]]; // G. C. Greubel, Feb 25 2023
-
Mathematica
Table[Sum[Sum[Binomial[m, j], {m, j, j+(n-k)}], {j,0,k}], {n,0,10}, {k, 0,n}]//Flatten (* Michael De Vlieger, Sep 01 2020 *) Table[Binomial[n+2,k+1] -1, {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 25 2023 *)
-
SageMath
flatten([[binomial(n+2,k+1)-1 for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Feb 25 2023
Formula
T(n, k) = T(n-1, k) + T(n-1, k-1) + 1, T(0, 0)=1. - Ralf Stephan, Jan 23 2005
G.f.: 1 / ((1-x)*(1-x*y)*(1-x*(1+y))). - Ralf Stephan, Jan 24 2005
T(n, k) = Sum_{j=0..k} Sum_{m=j..j+(n-k)} binomial(m, j). - Florian Kleedorfer (florian.kleedorfer(AT)austria.fm), May 23 2005
T(n, k) = binomial(n+2, k+1) - 1. - G. C. Greubel, Feb 25 2023
Extensions
More terms from Erich Friedman
Offset fixed by Reinhard Zumkeller, Apr 10 2012
Comments