A014538 Continued fraction for Catalan's constant 1 - 1/9 + 1/25 - 1/49 + 1/81 - ...
0, 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, 9, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 11, 1, 1, 1, 6, 1, 12, 1, 4, 7, 1, 1, 2, 5, 1, 5, 9, 1, 1, 1, 1, 33, 4, 1, 1, 3, 5, 3, 2, 1, 2, 1, 2, 1, 7, 6, 3, 1, 3, 3, 1, 1, 2, 1, 14, 1, 4, 4, 1, 2, 4, 1, 17, 4, 1, 14, 1, 1, 1, 12, 1
Offset: 0
Examples
C = 0.91596559417721901505... = 0 + 1/(1 + 1/(10 + 1/(1 + 1/(8 + ...))))
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. J. Fee, Computation of Catalan's constant using Ramanujan's formula, in Proc. Internat. Symposium on Symbolic and Algebraic Computation (ISSAC '90). 1990, pp. 157-160.
- Eric Weisstein's World of Mathematics, Catalan's Constant Continued Fraction
- G. Xiao, Contfrac
- Index entries for continued fractions for constants
Crossrefs
Programs
-
Magma
R:= RealField(100); ContinuedFraction(Catalan(R)); // G. C. Greubel, Aug 23 2018
-
Mathematica
ContinuedFraction[Catalan, 100] (* G. C. Greubel, Aug 23 2018 *)
-
PARI
default(realprecision, 100); contfrac(Catalan) \\ G. C. Greubel, Aug 23 2018
Comments