cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014550 Binary reflected Gray code.

Original entry on oeis.org

0, 1, 11, 10, 110, 111, 101, 100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000, 11000, 11001, 11011, 11010, 11110, 11111, 11101, 11100, 10100, 10101, 10111, 10110, 10010, 10011, 10001, 10000, 110000, 110001, 110011, 110010, 110110
Offset: 0

Views

Author

Keywords

References

  • M. Gardner, The Binary Gray Code. Ch. 2 in Knotted Doughnuts and Other Mathematical Entertainments. New York: W. H. Freeman, 1986.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 392.

Crossrefs

Same sequence in decimal: A003188.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          (b-> 10^b +a(2^(b+1)-1-n))(ilog2(n)))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 01 2008
  • Mathematica
    a[n_] := a[n] = (b = Floor[Log[2, n]]; If[n <= 1, n, 10^b + a[2^(b + 1) - 1 - n]]); Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Oct 11 2012, after Alois P. Heinz *)
  • PARI
    a(n)=fromdigits(binary(bitxor(n, n>>1))) \\ Charles R Greathouse IV, Feb 06 2017
    
  • Python
    def A014550(n): return int(bin(n^n>>1)[2:]) # Chai Wah Wu, May 31 2024

Extensions

More terms from Larry Reeves (Larryr(AT)acm.org), Sep 05 2000