cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A344346 Numbers k which have an odd number of trailing zeros in their binary reflected Gray code A014550(k).

Original entry on oeis.org

3, 4, 11, 12, 15, 16, 19, 20, 27, 28, 35, 36, 43, 44, 47, 48, 51, 52, 59, 60, 63, 64, 67, 68, 75, 76, 79, 80, 83, 84, 91, 92, 99, 100, 107, 108, 111, 112, 115, 116, 123, 124, 131, 132, 139, 140, 143, 144, 147, 148, 155, 156, 163, 164, 171, 172, 175, 176, 179, 180
Offset: 1

Views

Author

Amiram Eldar, May 15 2021

Keywords

Comments

Numbers k such that A050605(k-1) is odd.
Numbers k such that A136480(k) is even.
The asymptotic density of this sequence is 1/3.

Examples

			3 is a term since its Gray code, 10, has 1 trailing zero, and 1 is odd.
15 is a term since its Gray code, 1000, has 3 trailing zeros, and 3 is odd.
		

Crossrefs

Similar sequences: A001950 (Zeckendorf), A036554 (binary), A145204 (ternary), A217319 (quaternary), A232745 (factorial), A342050 (primorial).

Programs

  • Mathematica
    Select[Range[180], OddQ @ IntegerExponent[# * (# + 1)/2, 2] &]
  • Python
    def A344346(n):
        def f(x):
            c, s = (n+1>>1)+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1^1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return (m<<2)-(n&1) # Chai Wah Wu, Jan 29 2025

Formula

a(n) = A081706(n) + 1. - Hugo Pfoertner, May 16 2021

A373082 Number of runs of 0's in A014550(n).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 0, 1, 2, 1, 1, 1, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 1, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 2, 3
Offset: 0

Views

Author

James S. DeArmon, May 22 2024

Keywords

Crossrefs

Cf. A014550.

Programs

  • Python
    def count_zero_runs_in_binary(n):
        binRep = bin(n)[2:]   # as binary, but ignore "0b" prefix
        zRuns = binRep.split('1')  # split on the 1's
        zRvec = [run for run in zRuns if run] # filter "" to get runs of 0
        return len(zRvec)
    out = []
    for i in range(100):
        gv = i ^ (i>>1)   # gray code
        ans = count_zero_runs_in_binary(gv)
        out.append(ans)
    print(out)

A000975 a(2n) = 2*a(2n-1), a(2n+1) = 2*a(2n)+1 (also a(n) is the n-th number without consecutive equal binary digits).

Original entry on oeis.org

0, 1, 2, 5, 10, 21, 42, 85, 170, 341, 682, 1365, 2730, 5461, 10922, 21845, 43690, 87381, 174762, 349525, 699050, 1398101, 2796202, 5592405, 11184810, 22369621, 44739242, 89478485, 178956970, 357913941, 715827882, 1431655765, 2863311530, 5726623061, 11453246122
Offset: 0

Views

Author

Keywords

Comments

Might be called the "Lichtenberg sequence" after Georg Christoph Lichtenberg, who discussed it in 1769 in connection with the Chinese Rings puzzle (baguenaudier). - Andreas M. Hinz, Feb 15 2017
Number of steps to change from a binary string of n 0's to n 1's using a Gray code. - Jon Stadler (jstadler(AT)coastal.edu)
Popular puzzles such as Spin-Out and The Brain Puzzler are based on the Gray binary system and require a(n) steps to complete for some number n.
Conjecture: {a(n)} also gives all j for which A048702(j) = A000217(j); i.e., if we take the a(n)-th triangular number (a(n)^2 + a(n))/2 and multiply it by 3, we get a(n)-th even-length binary palindrome A048701(a(n)) concatenated from a(n) and its reverse. E.g., a(4) = 10, which is 1010 in binary; the tenth triangular number is 55, and 55*3 = 165 = 10100101 in binary. - Antti Karttunen, circa 1999. (This has been now proved by Paul K. Stockmeyer in his arXiv:1608.08245 paper.) - Antti Karttunen, Aug 31 2016
Number of ways to tie a tie of n or fewer half turns, excluding mirror images. Also number of walks of length n or less on a triangular lattice with the following restrictions; given l, r and c as the lattice axes. 1. All steps are taken in the positive axis direction. 2. No two consecutive steps are taken on the same axis. 3. All walks begin with l. 4. All walks end with rlc or lrc. - Bill Blewett, Dec 21 2000
a(n) is the minimal number of vertices to be selected in a vertex-cover of the balanced tree B_n. - Sen-peng Eu, Jun 15 2002
A087117(a(n)) = A038374(a(n)) = 1 for n > 1; see also A090050. - Reinhard Zumkeller, Nov 20 2003
Intersection of A003754 and A003714; complement of A107907. - Reinhard Zumkeller, May 28 2005
Equivalently, numbers m whose binary representation is effectively, for some number k, both the lazy Fibonacci and the Zeckendorf representation of k (in which case k = A022290(m)). - Peter Munn, Oct 06 2022
a(n+1) gives row sums of Riordan array (1/(1-x), x(1+2x)). - Paul Barry, Jul 18 2005
Total number of initial 01's in all binary words of length n+1. Example: a(3) = 5 because the binary words of length 4 that start with 01 are (01)00, (01)(01), (01)10 and (01)11 and the total number of initial 01's is 5 (shown between parentheses). a(n) = Sum_{k >= 0} k*A119440(n+1, k). - Emeric Deutsch, May 19 2006
In Norway we call the 10-ring puzzle "strikketoy" or "knitwear" (see link). It takes 682 moves to free the two parts. - Hans Isdahl, Jan 07 2008
Equals A002450 and A020988 interlaced. - Zak Seidov, Feb 10 2008
For n > 1, let B_n = the complete binary tree with vertex set V where |V| = 2^n - 1. If VC is a minimum-size vertex cover of B_n, Sen-Peng Eu points out that a(n) = |VC|. It also follows that if IS = V\VC, a(n+1) = |IS|. - K.V.Iyer, Apr 13 2009
Starting with 1 and convolved with [1, 2, 2, 2, ...] = A000295. - Gary W. Adamson, Jun 02 2009
a(n) written in base 2 is sequence A056830(n). - Jaroslav Krizek, Aug 05 2009
This is the sequence A(0, 1; 1, 2; 1) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
From Vladimir Shevelev, Jan 30 2012, Feb 13 2012: (Start)
1) Denote by {n, k} the number of permutations of 1, ..., n with the up-down index k (for definition, see comment in A203827). Then max_k{n, k} = {n, a(n)} = A000111(n).
2) a(n) is the minimal number > a(n-1) with the Hamming distance d_H(a(n-1), a(n)) = n. Thus this sequence is the Hamming analog of triangular numbers 0, 1, 3, 6, 10, ... (End)
From Hieronymus Fischer, Nov 22 2012: (Start)
Represented in binary form each term after the second one contains every previous term as a substring.
The terms a(2) = 2 and a(3) = 5 are the only primes. Proof: For even n we get a(n) = 2*(2^(2*n) - 1)/3, which shows that a(n) is even, too, and obviously a(n) > 2 for all even n > 2. For odd n we have a(n) = (2^(n+1) - 1)/3 = (2^((n+1)/2) - 1) * (2^((n+1)/2) + 1)/3. Evidently, at least one of these factors is divisible by 3, both are greater than 6, provided n > 3. Hence it follows that a(n) is composite for all odd n > 3.
Represented as a binary number, a(n+1) has exactly n prime substrings. Proof: Evidently, a(1) = 1_2 has zero and a(2) = 10_2 has 1 prime substring. Let n > 1. Written in binary, a(n+1) is 101010101...01 (if n + 1 is odd) and is 101010101...10 (if n + 1 is even) with n + 1 digits. Only the 2- and 3-digits substrings 10_2 (=2) and 101_2 (=5) are prime substrings. All the other substrings are nonprime since every substring is a previous term and all terms unequal to 2 and 5 are nonprime. For even n + 1, the number of prime substrings equal to 2 = 10_2 is (n+1)/2, and the number of prime substrings equal to 5 = 101_2 is (n-1)/2, makes a sum of n. For odd n + 1 we get n/2 for both, the number of 2's and 5's prime substrings, in any case, the sum is n. (End)
Number of different 3-colorings for the vertices of all triangulated planar polygons on a base with n+2 vertices if the colors of the two base vertices are fixed. - Patrick Labarque, Feb 09 2013
A090079(a(n)) = a(n) and A090079(m) <> a(n) for m < a(n). - Reinhard Zumkeller, Feb 16 2013
a(n) is the number of length n binary words containing at least one 1 and ending in an even number (possibly zero) of 0's. a(3) = 5 because we have: 001, 011, 100, 101, 111. - Geoffrey Critzer, Dec 15 2013
a(n) is the number of permutations of length n+1 having exactly one descent such that the first element of the permutation is an even number. - Ran Pan, Apr 18 2015
a(n) is the sequence of the last row of the Hadamard matrix H(2^n) obtained via Sylvester's construction: H(2) = [1,1;1,-1], H(2^n) = H(2^(n-1))*H(2), where * is the Kronecker product. - William P. Orrick, Jun 28 2015
Conjectured record values of A264784: a(n) = A264784(A155051(n-1)). - Reinhard Zumkeller, Dec 04 2015. (This is proved by Paul K. Stockmeyer in his arXiv:1608.08245 paper.) - Antti Karttunen, Aug 31 2016
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 131", based on the 5-celled von Neumann neighborhood. See A279053 for references and links. - Robert Price, Dec 05 2016
For n > 4, a(n-2) is the second-largest number in row n of A127824. - Dmitry Kamenetsky, Feb 11 2017
Conjecture: a(n+1) is the number of compositions of n with two kinds of parts, n and n', where the order of the 1 and 1' does not matter. For n=2, a(3) = 5 compositions, enumerated as follows: 2; 2'; 1,1; 1',1 = 1',1; 1',1'. - Gregory L. Simay, Sep 02 2017
Conjecture proved by recognizing the appropriate g.f. is x/(1 - x)(1 - x)(1 - 2*x^2 - 2x^3 - ...) = x/(1 - 2*x - x^2 + 2x^3). - Gregory L. Simay, Sep 10 2017
a(n) = 2^(n-1) + 2^(n-3) + 2^(n-5) + ... a(2*k -1) = A002450(k) is the sum of the powers of 4. a(2*k) = 2*A002450(k). - Gregory L. Simay, Sep 27 2017
a(2*n) = n times the string [10] in binary representation, a(2*n+1) = n times the string [10] followed with [1] in binary representation. Example: a(7) = 85 = (1010101) in binary, a(8) = 170 = (10101010) in binary. - Ctibor O. Zizka, Nov 06 2018
Except for 0, these are the positive integers whose binary expansion has cuts-resistance 1. For the operation of shortening all runs by 1, cuts-resistance is the number of applications required to reach an empty word. Cuts-resistance 2 is A329862. - Gus Wiseman, Nov 27 2019
From Markus Sigg, Sep 14 2020: (Start)
Let s(k) be the length of the Collatz orbit of k, e.g. s(1) = 1, s(2) = 2, s(3) = 5. Then s(a(n)) = n+3 for n >= 3. Proof by induction: s(a(3)) = s(5) = 6 = 3+3. For odd n >= 5 we have s(a(n)) = s(4*a(n-2)+1) = s(12*a(n-2)+4)+1 = s(3*a(n-2)+1)+3 = s(a(n-2))+2 = (n-2)+3+2 = n+3, and for even n >= 4 this gives s(a(n)) = s(2*a(n-1)) = s(a(n-1))+1 = (n-1)+3+1 = n+3.
Conjecture: For n >= 3, a(n) is the second largest natural number whose Collatz orbit has length n+3. (End)
From Gary W. Adamson, May 14 2021: (Start)
With offset 1 the sequence equals the numbers of 1's from n = 1 to 3, 3 to 7, 7 to 15, ...; of A035263; as shown below:
..1 3 7 15...
..1 0 1 1 1 0 1 0 1 0 1 1 1 0 1...
..1.....2...........5......................10...; a(n) = Sum_(k=1..2n-1)A035263(k)
.....1...........2.......................5...; as to zeros.
..1's in the Tower of Hanoi game represent CW moves On disks in the pattern:
..0, 1, 2, 0, 1, 2, ... whereas even numbered disks move in the pattern:
..0, 2, 1, 0, 2, 1, ... (End)
Except for 0, numbers that are repunits in Gray-code representation (A014550). - Amiram Eldar, May 21 2021
From Gus Wiseman, Apr 20 2023: (Start)
Also the number of nonempty subsets of {1..n} with integer median, where the median of a multiset is the middle part in the odd-length case, and the average of the two middle parts in the even-length case. For example, the a(1) = 1 through a(4) = 10 subsets are:
{1} {1} {1} {1}
{2} {2} {2}
{3} {3}
{1,3} {4}
{1,2,3} {1,3}
{2,4}
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
The complement is counted by A005578.
For mean instead of median we have A051293, counting empty sets A327475.
For normal multisets we have A056450, strongly normal A361202.
For partitions we have A325347, strict A359907, complement A307683.
(End)

Examples

			a(4)=10 since 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111 are the 10 binary strings switching 0000 to 1111.
a(3) = 1 because "lrc" is the only way to tie a tie with 3 half turns, namely, pass the business end of the tie behind the standing part to the left, bring across the front to the right, then behind to the center. The final motion of tucking the loose end down the front behind the "lr" piece is not considered a "step".
a(4) = 2 because "lrlc" is the only way to tie a tie with 4 half turns. Note that since the number of moves is even, the first step is to go to the left in front of the tie, not behind it. This knot is the standard "four in hand", the most commonly known men's tie knot. By contrast, the second most well known tie knot, the Windsor, is represented by "lcrlcrlc".
a(n) = (2^0 - 1) XOR (2^1 - 1) XOR (2^2 - 1) XOR (2^3 - 1) XOR ... XOR (2^n - 1). - _Paul D. Hanna_, Nov 05 2011
G.f. = x + 2*x^2 + 5*x^3 + 10*x^4 + 21*x^5 + 42*x^6 + 85*x^7 + 170*x^8 + ...
a(9) = 341 = 2^8 + 2^6 + 2^4 + 2^2 + 2^0 = 4^4 + 4^3 + 4^2 + 4^1 + 4^0 = A002450(5). a(10) = 682 = 2*a(9) = 2*A002450(5). - _Gregory L. Simay_, Sep 27 2017
		

References

  • Thomas Fink and Yong Mao, The 85 Ways to Tie a Tie, Broadway Books, New York (1999), p. 138.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009.

Crossrefs

Partial sums of A001045.
Row sums of triangle A013580.
Equals A026644/2.
Union of the bijections A002450 and A020988. - Robert G. Wilson v, Jun 09 2014
Column k=3 of A261139.
Complement of A107907.
Row 3 of A300653.
Other sequences that relate to the binary representation of the terms: A003714, A003754, A007088, A022290, A056830, A104161, A107909.

Programs

  • GAP
    List([0..35],n->(2^(n+1)-2+(n mod 2))/3); # Muniru A Asiru, Nov 01 2018
    
  • Haskell
    a000975 n = a000975_list !! n
    a000975_list = 0 : 1 : map (+ 1)
       (zipWith (+) (tail a000975_list) (map (* 2) a000975_list))
    -- Reinhard Zumkeller, Mar 07 2012
    
  • Magma
    [(2^(n+1) - 2 + (n mod 2))/3: n in [0..40]]; // Vincenzo Librandi, Mar 18 2015
    
  • Maple
    A000975 := proc(n) option remember; if n <= 1 then n else if n mod 2 = 0 then 2*A000975(n-1) else 2*A000975(n-1)+1 fi; fi; end;
    seq(iquo(2^n,3),n=1..33); # Zerinvary Lajos, Apr 20 2008
    f:=n-> if n mod 2 = 0 then (2^n-1)/3 else (2^n-2)/3; fi; [seq(f(n),n=0..40)]; # N. J. A. Sloane, Mar 21 2017
  • Mathematica
    Array[Ceiling[2(2^# - 1)/3] &, 41, 0]
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == a[n - 1] + 2a[n - 2] + 1}, a, {n, 40}] (* or *)
    LinearRecurrence[{2, 1, -2}, {0, 1, 2}, 40] (* Harvey P. Dale, Aug 10 2013 *)
    f[n_] := Block[{exp = n - 2}, Sum[2^i, {i, exp, 0, -2}]]; Array[f, 33] (* Robert G. Wilson v, Oct 30 2015 *)
    f[s_List] := Block[{a = s[[-1]]}, Append[s, If[OddQ@ Length@ s, 2a + 1, 2a]]]; Nest[f, {0}, 32] (* Robert G. Wilson v, Jul 20 2017 *)
    NestList[2# + Boole[EvenQ[#]] &, 0, 39] (* Alonso del Arte, Sep 21 2018 *)
  • PARI
    {a(n) = if( n<0, 0, 2 * 2^n \ 3)}; /* Michael Somos, Sep 04 2006 */
    
  • PARI
    a(n)=if(n<=0,0,bitxor(a(n-1),2^n-1)) \\ Paul D. Hanna, Nov 05 2011
    
  • PARI
    concat(0, Vec(x/(1-2*x-x^2+2*x^3) + O(x^100))) \\ Altug Alkan, Oct 30 2015
    
  • PARI
    {a(n) = (4*2^n - 3 - (-1)^n) / 6}; /* Michael Somos, Jul 23 2017 */
    
  • Python
    def a(n): return (2**(n+1) - 2 + (n%2))//3
    print([a(n) for n in range(35)]) # Michael S. Branicky, Dec 19 2021

Formula

a(n) = ceiling(2*(2^n-1)/3).
Alternating sum transform (PSumSIGN) of {2^n - 1} (A000225).
a(n) = a(n-1) + 2*a(n-2) + 1.
a(n) = 2*2^n/3 - 1/2 - (-1)^n/6.
a(n) = Sum_{i = 0..n} A001045(i), partial sums of A001045. - Bill Blewett
a(n) = n + 2*Sum_{k = 1..n-2} a(k).
G.f.: x/((1+x)*(1-x)*(1-2*x)) = x/(1-2*x-x^2+2*x^3). - Paul Barry, Feb 11 2003
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3). - Paul Barry, Feb 11 2003
a(n) = Sum_{k = 0..floor((n-1)/2)} 2^(n-2*k-1). - Paul Barry, Nov 11 2003
a(n+1) = Sum_{k=0..floor(n/2)} 2^(n-2*k); a(n+1) = Sum_{k = 0..n} Sum_{j = 0..k} (-1)^(j+k)*2^j. - Paul Barry, Nov 12 2003
(-1)^(n+1)*a(n) = Sum_{i = 0..n} Sum_{k = 1..i} k!*k* Stirling2(i, k)*(-1)^(k-1) = (1/3)*(-2)^(n+1)-(1/6)(3*(-1)^(n+1)-1). - Mario Catalani (mario.catalani(AT)unito.it), Dec 22 2003
a(n+1) = (n!/3)*Sum_{i - (-1)^i + j = n, i = 0..n, j = 0..n} 1/(i - (-1)^i)!/j!. - Benoit Cloitre, May 24 2004
a(n) = A001045(n+1) - A059841(n). - Paul Barry, Jul 22 2004
a(n) = Sum_{k = 0..n} 2^(n-k-1)*(1-(-1)^k), row sums of A130125. - Paul Barry, Jul 28 2004
a(n) = Sum_{k = 0..n} binomial(k, n-k+1)2^(n-k); a(n) = Sum_{k = 0..floor(n/2)} binomial(n-k, k+1)2^k. - Paul Barry, Oct 07 2004
a(n) = A107909(A104161(n)); A007088(a(n)) = A056830(n). - Reinhard Zumkeller, May 28 2005
a(n) = floor(2^(n+1)/3) = ceiling(2^(n+1)/3) - 1 = A005578(n+1) - 1. - Paul Barry, Oct 08 2005
Convolution of "Number of fixed points in all 231-avoiding involutions in S_n." (A059570) with "1-n" (A024000), treating the result as if offset was 0. - Graeme McRae, Jul 12 2006
a(n) = A081254(n) - 2^n. - Philippe Deléham, Oct 15 2006
Starting (1, 2, 5, 10, 21, 42, ...), these are the row sums of triangle A135228. - Gary W. Adamson, Nov 23 2007
Let T = the 3 X 3 matrix [1,1,0; 1,0,1; 0,1,1]. Then T^n * [1,0,0] = [A005578(n), A001045(n), a(n-1)]. - Gary W. Adamson, Dec 25 2007
2^n = 2*A005578(n-1) + 2*A001045(n) + 2*a(n-2). - Gary W. Adamson, Dec 25 2007
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*stirling2(k,j)*x^(m-k) then a(n-3) = (-1)^(n-1)*f(n,3,-2), (n >= 3). - Milan Janjic, Apr 26 2009
a(n) + A001045(n) = A166920(n). a(n) + A001045(n+2) = A051049(n+1). - Paul Curtz, Oct 29 2009
a(n) = floor(A051049(n+1)/3). - Gary Detlefs, Dec 19 2010
a(n) = round((2^(n+2)-3)/6) = floor((2^(n+1)-1)/3) = round((2^(n+1)-2)/3); a(n) = a(n-2) + 2^(n-1), n > 1. - Mircea Merca, Dec 27 2010
a(n) = binary XOR of 2^k-1 for k=0..n. - Paul D. Hanna, Nov 05 2011
E.g.f.: 2/3*exp(2*x) - 1/2*exp(x) - 1/6*exp(-x) = 2/3*U(0); U(k) = 1 - 3/(4*(2^k) - 4*(2^k)/(1+3*(-1)^k - 24*x*(2^k)/(8*x*(2^k)*(-1)^k - (k+1)/U(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
Starting with "1" = triangle A059260 * [1, 2, 2, 2, ...] as a vector. - Gary W. Adamson, Mar 06 2012
a(n) = 2*(2^n - 1)/3, for even n; a(n) = (2^(n+1) - 1)/3 = (1/3)*(2^((n+1)/2) - 1)*(2^((n+1)/2) + 1), for odd n. - Hieronymus Fischer, Nov 22 2012
a(n) + a(n+1) = 2^(n+1) - 1. - Arie Bos, Apr 03 2013
G.f.: Q(0)/(3*(1-x)), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
floor(a(n+2)*3/5) = A077854(n), for n >= 0. - Armands Strazds, Sep 21 2014
a(n) = (2^(n+1) - 2 + (n mod 2))/3. - Paul Toms, Mar 18 2015
a(0) = 0, a(n) = 2*(a(n-1)) + (n mod 2). - Paul Toms, Mar 18 2015
Binary: a(n) = (a(n-1) shift left 1) + (a(n-1)) NOR (...11110). - Paul Toms, Mar 18 2015
Binary: for n > 1, a(n) = 2*a(n-1) OR a(n-2). - Stanislav Sykora, Nov 12 2015
a(n) = A266613(n) - 20*2^(n-5), for n > 2. - Andres Cicuttin, Mar 31 2016
From Michael Somos, Jul 23 2017: (Start)
a(n) = -(2^n)*a(-n) for even n; a(n) = -(2^(n+1))*a(-n) + 1 for odd n.
0 = +a(n)*(+2 +4*a(n) -4*a(n+1)) + a(n+1)*(-1 +a(n+1)) for all n in Z. (End)
G.f.: (x^1+x^3+x^5+x^7+...)/(1-2*x). - Gregory L. Simay, Sep 27 2017
a(n+1) = A051049(n) + A001045(n). - Yuchun Ji, Jul 12 2018
a(n) = A153772(n+3)/4. - Markus Sigg, Sep 14 2020
a(4*k+d) = 2^(d+1)*a(4*k-1) + a(d), a(n+4) = a(n) + 2^n*10, a(0..3) = [0,1,2,5]. So the last digit is always 0,1,2,5 repeated. - Yuchun Ji, May 22 2023

Extensions

Additional comments from Barry E. Williams, Jan 10 2000

A003188 Decimal equivalent of Gray code for n.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8, 24, 25, 27, 26, 30, 31, 29, 28, 20, 21, 23, 22, 18, 19, 17, 16, 48, 49, 51, 50, 54, 55, 53, 52, 60, 61, 63, 62, 58, 59, 57, 56, 40, 41, 43, 42, 46, 47, 45, 44, 36, 37, 39, 38, 34, 35, 33, 32, 96, 97, 99, 98, 102, 103, 101
Offset: 0

Views

Author

Keywords

Comments

Inverse of sequence A006068 considered as a permutation of the nonnegative integers, i.e., A006068(A003188(n)) = n = A003188(A006068(n)). - Howard A. Landman, Sep 25 2001
Restricts to a permutation of each {2^(i - 1) .. 2^i - 1}. - Jason Kimberley, Apr 02 2012
a(n) mod 2 = floor(((n + 1) mod 4) / 2), see also A021913. - Reinhard Zumkeller, Apr 28 2012
Invented by Emile Baudot (1845-1903), originally called a "cyclic-permuted" code. Gray codes are named after Frank Gray, who patented their use for shaft encoders in 1953. [F. Gray, "Pulse Code Communication", U.S. Patent 2,632,058, March 17, 1953.] - Robert G. Wilson v, Jun 22 2014
For n >= 2, let G_n be the graph whose vertices are labeled as 0,1,...,2^n-1, and two vertices are adjacent if and only if their binary expansions differ in exactly one bit, then a(0),a(1),...,a(2^n-1),a(0) is a Hamilton cycle in G_n. - Jianing Song, Jun 01 2022

Examples

			For n = 13, the binary reflected Gray code representation of n is '1011' and 1011_2 = 11_10. So, a(13) = 11. - _Indranil Ghosh_, Jan 23 2017
		

References

  • M. Gardner, Mathematical Games, Sci. Amer. Vol. 227 (No. 2, Feb. 1972), p. 107.
  • M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(2*A003714(n)) = 3*A003714(n) for all n. - Antti Karttunen, Apr 26 1999
Cf. A014550 (in binary), A055975 (first differences), A048724 (even bisection), A065621 (odd bisection).

Programs

  • C
    int a(int n) { return n ^ (n>>1); }
    
  • Haskell
    import Data.Bits (xor, shiftR)
    a003188 n = n `xor` (shiftR n 1) :: Integer
    -- Reinhard Zumkeller, May 26 2013, Apr 28 2012
    
  • Magma
    // A recursive algorithm
    N := 10; s := [[]];
    for n in [1..N] do
    for j in [#s..1 by -1] do
       Append(~s,Append(s[j],1));
       Append(~s[j],0);
    end for;
    end for;
    [SequenceToInteger(b,2):b in s]; // Jason Kimberley, Apr 02 2012
    
  • Magma
    // A direct algorithm
    I2B := func< i | [b eq 1: b in IntegerToSequence(i,2)]>;
    B2I := func< s | SequenceToInteger([b select 1 else 0:b in s],2)>;
    [B2I(Xor(I2B(i),I2B(i div 2)cat[false])):i in [1..127]]; //Jason Kimberley, Apr 02 2012
    
  • Maple
    with(combinat); graycode(6); # to produce first 64 terms
    printf(cat(` %.6d`$64), op(map(convert, graycode(6), binary))); lprint(); # to produce binary strings
    # alternative:
    read("transforms"):
    A003188 := proc(n)
        XORnos(n,floor(n/2)) ;
    end proc: # R. J. Mathar, Mar 09 2015
    # another Maple program:
    a:= n-> Bits[Xor](n, iquo(n, 2)):
    seq(a(n), n=0..70);  # Alois P. Heinz, Aug 16 2020
  • Mathematica
    f[n_] := BitXor[n, Floor[n/2]]; Array[f, 70, 0] (* Robert G. Wilson v, Jun 09 2010 *)
  • PARI
    a(n)=bitxor(n,n>>1);
    
  • PARI
    a(n)=sum(k=1,n,(-1)^((k/2^valuation(k,2)-1)/2)*2^valuation(k,2))
    
  • Python
    def A003188(n):
        return int(bin(n^(n//2))[2:],2) # Indranil Ghosh, Jan 23 2017
    
  • Python
    def A003188(n): return n^ n>>1 # Chai Wah Wu, Jun 29 2022
    
  • R
    maxn <- 63 # by choice
    a <- 1
    for(n in 1:maxn){ a[2*n  ] <- 2*a[n] + (n%%2 != 0)
                      a[2*n+1] <- 2*a[n] + (n%%2 == 0)}
    (a <- c(0,a))
    # Yosu Yurramendi, Apr 10 2020
    (C#)
    static uint a(this uint n) => (n >> 1) ^ n; // Frank Hollstein, Mar 12 2021

Formula

a(n) = 2*a(floor(n/2)) + A021913(n - 1). - Henry Bottomley, Apr 05 2001
a(n) = n XOR floor(n/2), where XOR is the binary exclusive OR operator. - Paul D. Hanna, Jun 04 2002
G.f.: (1/(1-x)) * Sum_{k>=0} 2^k*x^2^k/(1 + x^2^(k+1)). - Ralf Stephan, May 06 2003
a(0) = 0, a(2n) = 2a(n) + [n odd], a(2n + 1) = 2a(n) + [n even]. - Ralf Stephan, Oct 20 2003
a(0) = 0, a(n) = 2 a(floor(n/2)) + mod(floor((n + 1)/2), 2).
a(n) = Sum_{k=1..n} 2^A007814(k) * (-1)^((k/2^A007814(k) - 1)/2). - Ralf Stephan, Oct 29 2003
a(0) = 0, a(n + 1) = a(n) XOR 2^A007814(n) - Jaume Simon Gispert (jaume(AT)nuem.com), Sep 11 2004
Inverse of sequence A006068. - Philippe Deléham, Apr 29 2005
a(n) = a(n-1) XOR A006519(n). - Franklin T. Adams-Watters, Jul 18 2011
From Mikhail Kurkov, Sep 27 2023: (Start)
a(2^m + k) = a(2^m - k - 1) + 2^m for 0 <= k < 2^m, m >= 0.
a(n) = a(A053645(A054429(n))) + A053644(n) for n > 0.
a(n) = A063946(a(A053645(n)) + A053644(n)) for n > 0. (End)

A006068 a(n) is Gray-coded into n.

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 4, 5, 15, 14, 12, 13, 8, 9, 11, 10, 31, 30, 28, 29, 24, 25, 27, 26, 16, 17, 19, 18, 23, 22, 20, 21, 63, 62, 60, 61, 56, 57, 59, 58, 48, 49, 51, 50, 55, 54, 52, 53, 32, 33, 35, 34, 39, 38, 36, 37, 47, 46, 44, 45, 40, 41, 43, 42, 127, 126, 124, 125, 120, 121
Offset: 0

Views

Author

Keywords

Comments

Equivalently, if binary expansion of n has m bits (say), compute derivative of n (A038554), getting sequence n' of length m-1; sort on n'.
Inverse of sequence A003188 considered as a permutation of the nonnegative integers, i.e., a(A003188(n)) = n = A003188(a(n)). - Howard A. Landman, Sep 25 2001
The sequence exhibits glide reflections that grow fractally. These show up well on the scatterplot, also audibly using the "listen" link. - Peter Munn, Aug 18 2019
Each bit at bit-index k (counted from the right hand end, with the least significant bit having bit-index 0) in the binary representation of a(n) is the parity of the number of 1's among the bits of the binary representation of n that have a bit-index of k or higher. - Frederik P.J. Vandecasteele, May 26 2025

Examples

			The first few values of n' are -,-,1,0,10,11,01,00,100,101,111,110,010,011,001,000,... (for n=0..15) and to put these in lexicographic order we must take n in the order 0,1,3,2,7,6,4,5,15,14,12,13,8,9,11,10,...
		

References

  • M. Gardner, Mathematical Games, Sci. Amer. Vol. 227 (No. 2, Feb. 1972), p. 107.
  • M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A054429, A180200. - Reinhard Zumkeller, Aug 15 2010
Cf. A000079, A055975 (first differences), A209281 (binary weight).
A003987, A010060 are used to express relationship between terms of this sequence.

Programs

  • Haskell
    a006068 n = foldl xor 0 $
                      map (div n) $ takeWhile (<= n) a000079_list :: Integer
    -- Reinhard Zumkeller, Apr 28 2012
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          Bits[Xor](n, a(iquo(n, 2))))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Apr 17 2018
  • Mathematica
    a[n_] := BitXor @@ Table[Floor[n/2^m], {m, 0, Floor[Log[2, n]]}]; a[0]=0; Table[a[n], {n, 0, 69}] (* Jean-François Alcover, Jul 19 2012, after Paul D. Hanna *)
    Table[Fold[BitXor, n, Quotient[n, 2^Range[BitLength[n] - 1]]], {n, 0, 70}] (* Jan Mangaldan, Mar 20 2013 *)
  • PARI
    {a(n)=local(B=n);for(k=1,floor(log(n+1)/log(2)),B=bitxor(B,n\2^k));B} /* Paul D. Hanna, Jan 18 2012 */
    
  • PARI
    /* the following routine needs only O(log_2(n)) operations */
    a(n)= {
        my( s=1, ns );
        while ( 1,
            ns = n >> s;
            if ( 0==ns, break() );
            n = bitxor(n, ns);
            s <<= 1;
        );
        return ( n );
    } /* Joerg Arndt, Jul 19 2012 */
    
  • Python
    def a(n):
        s=1
        while True:
            ns=n>>s
            if ns==0: break
            n=n^ns
            s<<=1
        return n
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 07 2017, after PARI code by Joerg Arndt
    
  • R
    nmax <- 63 # by choice
    a <- vector()
    for(n in 1:nmax){
      ones <- which(as.integer(intToBits(n)) == 1)
      nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)]
      level <- 0; anbit <- nbit; anbit.s <- nbit
      while(sum(anbit.s) > 0){
        s <- 2^level; if(s > length(anbit.s)) break
        anbit.s <- c(anbit[-(1:s)], rep(0,s))
        anbit <- bitwXor(anbit, anbit.s)
        level <- level + 1
      }
      a <- c(a, sum(anbit*2^(0:(length(anbit) - 1))))
    }
    (a <- c(0,a))
    # Yosu Yurramendi, Oct 12 2021, after PARI code by Joerg Arndt

Formula

a(n) = 2*a(ceiling((n+1)/2)) + A010060(n-1). If 3*2^(k-1) < n <= 2^(k+1), a(n) = 2^(k+1) - 1 - a(n-2^k); if 2^(k+1) < n <= 3*2^k, a(n) = a(n-2^k) + 2^k. - Henry Bottomley, Jan 10 2001
a(n) = n XOR [n/2] XOR [n/4] XOR [n/8] ... XOR [n/2^m] where m = [log(n)/log(2)] (for n>0) and [x] is integer floor of x. - Paul D. Hanna, Jun 04 2002
a(n) XOR [a(n)/2] = n. - Paul D. Hanna, Jan 18 2012
A066194(n) = a(n-1) + 1, n>=1. - Philippe Deléham, Apr 29 2005
a(n) = if n<2 then n else 2*m + (n mod 2 + m mod 2) mod 2, with m=a(floor(n/2)). - Reinhard Zumkeller, Aug 10 2010
a(n XOR m) = a(n) XOR a(m), where XOR is the bitwise exclusive-or operator, A003987. - Peter Munn, Dec 14 2019
a(0) = 0. For all n >= 0 if a(n) is even a(2*n) = 2*a(n), a(2*n+1) = 2*a(n)+1, else a(2*n) = 2*a(n)+1, a(2*n+1) = 2*a(n). - Yosu Yurramendi, Oct 12 2021
Conjecture: a(n) = a(A053645(A063946(n))) + A053644(n) for n > 0 with a(0) = 0. - Mikhail Kurkov, Sep 09 2023
a(n) = 2*A265263(n) - 2*A377404(n) - A010060(n). - Alan Michael Gómez Calderón, Jun 26 2025

Extensions

More terms from Henry Bottomley, Jan 10 2001

A014601 Numbers congruent to 0 or 3 mod 4.

Original entry on oeis.org

0, 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28, 31, 32, 35, 36, 39, 40, 43, 44, 47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 67, 68, 71, 72, 75, 76, 79, 80, 83, 84, 87, 88, 91, 92, 95, 96, 99, 100, 103, 104, 107, 108, 111, 112, 115, 116, 119, 120, 123, 124
Offset: 0

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

Comments

Discriminants of orders in imaginary quadratic fields (negated). [Comment corrected by Christopher E. Thompson, Dec 11 2016]
Numbers such that Langford-Skolem problem has a solution - see A014552.
Complement of A042963. - Reinhard Zumkeller, Oct 04 2004
Also called skew amenable numbers; a number k is skew amenable if there exist a set {a(i)} of integers satisfying the relations k = Sum_{i=1..k} a(i) = -Product_{i=1..k} a(i). Thus we have 8 = 1 + 1 + 1 + 1 + 1 + 1 - 2 + 4 = -(1*1*1*1*1*1*(-2)*4). - Lekraj Beedassy, Jan 07 2005
Possible nonpositive discriminants of quadratic equation a*x^2 + b*x + c or discriminants of binary quadratic forms a*x^2 + b*x*y + c*y^2. - Artur Jasinski, Apr 28 2008
Also, disregarding the 0 term, positive integers m such that, equivalently,
(i) +-1 +-2 +-... +-m is even for all choices of signs,
(ii) +-1 +-2 +-... +-m = 0 for some choices of signs,
(iii) for all -m <= k <= m, k = +-1 +-2 +-... +-(k-1) +-(k+1) +-(k+2) +-... +-m for at least one choice of signs. - Rick L. Shepherd, Oct 29 2008
A145768(a(n)) is even. - Reinhard Zumkeller, Jun 05 2012
Multiples of 4 interleaved with 1 less than multiples of 4. - Wesley Ivan Hurt, Nov 08 2013
((2*k+0) + (2*k+1) + ... + (2*k+m-1) + (2*k+m)) is even if and only if m = a(n) for some n where k is any nonnegative integer. - Gionata Neri, Jul 24 2015
Numbers whose binary reflected Gray code (A014550) ends with 0. - Amiram Eldar, May 17 2021

Examples

			G.f. = 3*x + 4*x^2 + 7*x^3 + 8*x^4 + 11*x^5 + 12*x^6 + 15*x^7 + 16*x^8 + ...
		

References

  • H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, pp. 514-5.
  • A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, p. 108.

Crossrefs

Cf. A274406. - Bruno Berselli, Jun 26 2016

Programs

  • Haskell
    a014601 n = a014601_list !! n
    a014601_list = [x | x <- [0..], mod x 4 `elem` [0, 3]]
    -- Reinhard Zumkeller, Jun 05 2012
  • Magma
    [n: n in [0..200]|n mod 4 in {0,3}]; // Vincenzo Librandi, Dec 24 2010
    
  • Maple
    A014601:=n->3*n-2*floor(n/2); seq(A014601(k), k=0..100); # Wesley Ivan Hurt, Nov 08 2013
  • Mathematica
    aa = {}; Do[Do[Do[d = b^2 - 4 a c; If[d <= 0, AppendTo[aa, -d]], {a, 0, 50}], {b, 0, 50}], {c, 0, 50}]; Union[aa] (* Artur Jasinski, Apr 28 2008 *)
    Select[Range[0, 124], Or[Mod[#, 4] == 0, Mod[#, 4] == 3] &] (* Ant King, Nov 18 2010 *)
    CoefficientList[Series[2 x/(1 - x)^2 + (1/(1 - x) + 1/(1 + x)) x/2, {x, 0, 100}], x] (* Vincenzo Librandi, May 18 2014 *)
    a[ n_] := 2 n + Mod[n, 2]; (* Michael Somos, Jul 24 2015 *)
  • PARI
    {a(n) = 2*n + n%2}; /* Michael Somos, Dec 27 2010 */
    

Formula

a(n) = (n + 1)*2 + 1 - n mod 2. - Reinhard Zumkeller, Apr 21 2003
A014494(n) = A000217(a(n)). - Reinhard Zumkeller, Oct 04 2004
a(n) = Sum_{k=1..n} (2 - (-1)^k). - William A. Tedeschi, Mar 20 2008
A139131(a(n)) = A078636(a(n)). - Reinhard Zumkeller, Apr 10 2008
From R. J. Mathar, Sep 25 2009: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 2.
G.f.: x*(3+x)/((1+x)*(x-1)^2). (End)
a(n) = 2*n + (n mod 2). - Paolo Valzasina (p.valzasina(AT)gmail.com), Nov 24 2009
a(n) = (4*n - (-1)^n + 1)/2. - Bruno Berselli, Oct 06 2010
a(n) = 4*n - a(n-1) - 1 (with a(0) = 0). - Vincenzo Librandi, Dec 24 2010
a(n) = -A042948(-n) for all n in Z. - Michael Somos, Dec 27 2010
G.f.: 2*x / (1 - x)^2 + (1 / (1 - x) + 1 / (1 + x)) * x/2. - Michael Somos, Dec 27 2010
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0) = 3 and b(k) = 2^(k+1) for k > 0. - Philippe Deléham, Oct 17 2011
a(n) = ceiling((4/3)*ceiling(3*n/2)). - Clark Kimberling, Jul 04 2012
a(n) = 3n - 2*floor(n/2). - Wesley Ivan Hurt, Nov 08 2013
a(n) = A042948(n+1) - 1 for all n in Z. - Michael Somos, Jul 24 2015
a(n) + a(n+1) = A004767(n) for all n in Z. - Michael Somos, Jul 24 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2)/4 - Pi/8. - Amiram Eldar, Dec 05 2021
E.g.f.: ((4*x + 1)*exp(x) - exp(-x))/2. - David Lovler, Aug 04 2022

A042963 Numbers congruent to 1 or 2 mod 4.

Original entry on oeis.org

1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 33, 34, 37, 38, 41, 42, 45, 46, 49, 50, 53, 54, 57, 58, 61, 62, 65, 66, 69, 70, 73, 74, 77, 78, 81, 82, 85, 86, 89, 90, 93, 94, 97, 98, 101, 102, 105, 106, 109, 110, 113, 114, 117, 118, 121, 122, 125, 126, 129, 130, 133, 134, 137, 138
Offset: 1

Views

Author

Keywords

Comments

Complement of A014601. - Reinhard Zumkeller, Oct 04 2004
Let S(x) = (1, 2, 2, 2, ...). Then A042963 = ((S(x))^2 + S(x^2))/2 = ((1, 4, 8, 12, 16, 20, ...) + (1, 0, 2, 0, 2, 0, 2, ...))/2 = (1, 2, 5, 6, 9, 10, ...). - Gary W. Adamson, Jan 03 2011
(a(n)*(a(n) + 1 + 4*k))/2 is odd, for k >= 0. - Gionata Neri, Jul 19 2015
Equivalent to the following variation on Fermat's Diophantine m-tuple: 1 + the product of any two distinct terms is not a square; this sequence, which we'll call sequence S, is produced by the following algorithm. At the start, S is initially empty. At stage n, starting at n = 1, the algorithm checks whether there exists a number m already in the sequence, such that mn+1 is a perfect square. If such a number m is found, then n is not added to the sequence; otherwise, n is added. Then n is incremented to n + 1, and we repeat the procedure. Proof by Clark R. Lyons: We prove by strong induction that n is in the sequence S if and only if n == 1 (mod 4) or n == 2 (mod 4). Suppose now that this holds for all k < n. In case 1, either n == 1 (mod 4) or n == 2 (mod 4), and we wish to show that n does indeed enter the sequence S. That is, we wish to show that there does not exist m < n, already in the sequence at this point such that mn+1 is a square. By the inductive hypothesis m == 1 (mod 4) or m == 2 (mod 4). This means that both m and n are one of 1, 2, 5, or 6 mod 8. Using a multiplication table mod 8, we see that this implies mn+1 is congruent to one of 2, 3, 5, 6, or 7 mod 8. But we also see that mod 8, a perfect square is congruent to 0, 1, or 4. Thus mn+1 is not a perfect square, so n is added to the sequence. In case 2, n == 0 (mod 4) or n == 3 (mod 4), and we wish to show that n is not added to the sequence. That is, we wish to show that there exists m < n already in the sequence such that mn+1 is a perfect square. For this we let m = n - 2, which is positive since n >= 3. By the inductive hypothesis, since m == 1 (mod 4) or m == 2 (mod 4) and m < n, m is already in the sequence. And we have m*n + 1 = (n - 2)*n + 1 = n^2 - 2*n + 1 = (n - 1)^2, so mn+1 is indeed a perfect square, and so n is not added to the sequence. Thus n is added to the sequence if and only if n == 1 (mod 4) or n == 2 (mod 4). This completes the proof. - Robert C. Lyons, Jun 30 2016
Also the number of maximal cliques in the (n + 1) X (n + 1) black bishop graph. - Eric W. Weisstein, Dec 01 2017
Lexicographically earliest sequence of distinct positive integers such that the average of any two or more consecutive terms is never an integer. (For opposite property see A005408.) - Ivan Neretin, Dec 21 2017
Numbers whose binary reflected Gray code (A014550) ends with 1. - Amiram Eldar, May 17 2021
Also: append its negated last bit to n-1. - M. F. Hasler, Oct 17 2022

Crossrefs

Cf. A153284 (first differences), A014848 (partial sums).
Cf. A014550, A046712 (subsequence).
Union of A016813 and A016825.

Programs

  • Haskell
    a042963 n = a042963_list !! (n-1)
    a042963_list = [x | x <- [0..], mod x 4 `elem` [1,2]]
    -- Reinhard Zumkeller, Feb 14 2012
  • Magma
    [ n : n in [1..165] | n mod 4 eq 1 or n mod 4 eq 2 ]; // Vincenzo Librandi, Jan 25 2011
    
  • Maple
    A046923:=n->(n mod 2) + 2n - 2; seq(A046923(n), n=1..100); # Wesley Ivan Hurt, Oct 10 2013
  • Mathematica
    Select[Range[109], Or[Mod[#, 4] == 1, Mod[#, 4] == 2] &] (* Ant King, Nov 17 2010 *)
    Table[(4 n - 3 - (-1)^n)/2, {n, 20}] (* Eric W. Weisstein, Dec 01 2017 *)
    LinearRecurrence[{1, 1, -1}, {1, 2, 5}, 20] (* Eric W. Weisstein, Dec 01 2017 *)
    CoefficientList[Series[(1 + x + 2 x^2)/((-1 + x)^2 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
  • PARI
    a(n)=2*n-1-(n-1)%2 \\ Jianing Song, Oct 06 2018; adapted to offset by Michel Marcus, Sep 09 2022
    
  • PARI
    apply( A042963(n)=n*2-2+n%2, [1..99]) \\ M. F. Hasler, Oct 17 2022
    

Formula

a(n) = 1 + A042948(n-1). [Corrected by Jianing Song, Oct 06 2018]
From Michael Somos, Jan 12 2000: (Start)
G.f.: x*(1 + x + 2*x^2)/((1 - x)^2*(1 + x)).
a(n) = a(n-1) + 2 + (-1)^n, a(0) = 1. (End) [This uses offset 0. - Jianing Song, Oct 06 2018]
A014493(n) = A000217(a(n)). - Reinhard Zumkeller, Oct 04 2004, Feb 14 2012
a(n) = Sum_{k=0..n} (A001045(k) mod 4). - Paul Barry, Mar 12 2004
A145768(a(n)) is odd. - Reinhard Zumkeller, Jun 05 2012
a(n) = A005843(n-1) + A059841(n-1). - Philippe Deléham, Mar 31 2009 [Corrected by Jianing Song, Oct 06 2018]
a(n) = 4*n - a(n-1) - 5 for n > 1. [Corrected by Jerzy R Borysowicz, Jun 09 2023]
From Ant King, Nov 17 2010: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = (4*n - 3 - (-1)^n)/2. (End)
a(n) = (n mod 2) + 2*n - 2. - Wesley Ivan Hurt, Oct 10 2013
A163575(a(n)) = n - 1. - Reinhard Zumkeller, Jul 22 2014
E.g.f.: 2 + (2*x - 1)*sinh(x) + 2*(x - 1)*cosh(x). - Ilya Gutkovskiy, Jun 30 2016
E.g.f.: 2 + (2*x - 1)*exp(x) - cosh(x). - David Lovler, Jul 19 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 + log(2)/4. - Amiram Eldar, Dec 05 2021

Extensions

Offset corrected by Reinhard Zumkeller, Feb 14 2012
More terms by David Lovler, Jul 19 2022

A047452 Numbers that are congruent to {1, 6} mod 8.

Original entry on oeis.org

1, 6, 9, 14, 17, 22, 25, 30, 33, 38, 41, 46, 49, 54, 57, 62, 65, 70, 73, 78, 81, 86, 89, 94, 97, 102, 105, 110, 113, 118, 121, 126, 129, 134, 137, 142, 145, 150, 153, 158, 161, 166, 169, 174, 177, 182, 185, 190
Offset: 1

Views

Author

Keywords

Comments

Except for 1, numbers whose binary reflected Gray code (A014550) ends with 01. - Amiram Eldar, May 17 2021

Crossrefs

Programs

  • GAP
    Filtered([0..250], n->n mod 8=1 or n mod 8=6); # Muniru A Asiru, Jul 24 2018
    
  • Maple
    seq(coeff(series(factorial(n)*((4+exp(-x)+(8*x-5)*exp(x))/2), x,n+1),x,n),n=1..60); # Muniru A Asiru, Jul 24 2018
  • Mathematica
    Table[(8 n - 5 + (-1)^n)/2, {n, 1, 100}] (* Franck Maminirina Ramaharo, Jul 23 2018 *)
    CoefficientList[ Series[(2x^2 + 5x + 1)/((x - 1)^2 (x + 1)), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 1, -1}, {1, 6, 9}, 51] (* Robert G. Wilson v, Jul 24 2018 *)
  • Maxima
    makelist((8*n - 5 + (-1)^n)/2, n, 1, 100); /* Franck Maminirina Ramaharo, Jul 23 2018 */
    
  • Python
    def A047452(n): return (n<<2)-2-(n&1) # Chai Wah Wu, Mar 30 2024

Formula

G.f.: x*(1+5*x+2*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
E.g.f.: (4 + exp(-x) + (8*x - 5)*exp(x))/2. - Ilya Gutkovskiy, May 25 2016
a(n) = A047615(n) + 1. - Franck Maminirina Ramaharo, Jul 23 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+2)*Pi/16 + log(2)/8 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 11 2021

A047617 Numbers that are congruent to {2, 5} mod 8.

Original entry on oeis.org

2, 5, 10, 13, 18, 21, 26, 29, 34, 37, 42, 45, 50, 53, 58, 61, 66, 69, 74, 77, 82, 85, 90, 93, 98, 101, 106, 109, 114, 117, 122, 125, 130, 133, 138, 141, 146, 149, 154, 157, 162, 165, 170, 173, 178, 181, 186, 189, 194, 197, 202, 205, 210, 213, 218, 221, 226, 229, 234
Offset: 1

Views

Author

Keywords

Comments

Numbers whose binary reflected Gray code (A014550) ends with 11. - Amiram Eldar, May 17 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[300],MemberQ[{2,5},Mod[#,8]]&] (* or *) LinearRecurrence[ {1,1,-1},{2,5,10},80] (* Harvey P. Dale, Feb 23 2016 *)
  • Maxima
    makelist(4*n -(5 + (-1)^n)/2, n, 1, 100); /* Franck Maminirina Ramaharo, Jul 22 2018 */
    
  • Python
    def A047617(n): return (n-1<<2)+1+(n&1) # Chai Wah Wu, Mar 30 2024

Formula

a(n) = 8*n - a(n-1) - 9 (with a(1)=2). - Vincenzo Librandi, Aug 06 2010
a(n) = 4*n - (5 + (-1)^n)/2. - Arkadiusz Wesolowski, Sep 18 2012
G.f.: (2+3*x+3*x^2)/((-1+x)^2*(1+x)). - Harvey P. Dale, Feb 23 2016
a(1)=2, a(2)=5, a(3)=10, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Feb 23 2016
From Franck Maminirina Ramaharo, Jul 22 2018: (Start)
a(n) = A047470(n) + 2.
E.g.f.: (6 - exp(-x) + (8*x - 5)*exp(x))/2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/16 - log(2)/8 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 11 2021

Extensions

More terms from Vincenzo Librandi, Aug 06 2010

A344341 Gray-code Niven numbers: numbers divisible by the number of 1's in their binary reflected Gray code (A005811).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 20, 24, 27, 28, 30, 31, 32, 33, 36, 39, 40, 42, 44, 45, 48, 51, 52, 56, 57, 60, 62, 63, 64, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 99, 100, 104, 105, 108, 111, 112, 116, 120, 123, 124, 126, 127, 128, 129, 132, 135, 136
Offset: 1

Views

Author

Amiram Eldar, May 15 2021

Keywords

Examples

			2 is a term since its Gray code is 11 and 1+1 = 2 is a divisor of 2.
6 is a term since its Gray code is 101 and 1+0+1 = 2 is a divisor of 6.
		

Crossrefs

Subsequences: A344342, A344343, A344344.
Similar sequences: A005349 (decimal), A049445 (binary), A064150 (ternary), A064438 (quaternary), A064481 (base 5), A118363 (factorial), A328208 (Zeckendorf), A328212 (lazy Fibonacci), A331085 (negaFibonacci), A333426 (primorial), A334308 (base phi), A331728 (negabinary), A342426 (base 3/2), A342726 (base i-1).

Programs

  • Mathematica
    gcNivenQ[n_] := Divisible[n, DigitCount[BitXor[n, Floor[n/2]], 2, 1]]; Select[Range[150], gcNivenQ]
Showing 1-10 of 31 results. Next