A014566 Sierpiński numbers of the first kind: n^n + 1.
2, 2, 5, 28, 257, 3126, 46657, 823544, 16777217, 387420490, 10000000001, 285311670612, 8916100448257, 302875106592254, 11112006825558017, 437893890380859376, 18446744073709551617, 827240261886336764178, 39346408075296537575425, 1978419655660313589123980
Offset: 0
References
- Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- Maohua Le, Primes in the sequences n^n+1 and n^n-1, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, pp. 156-157.
- Paulo Ribenboim, The Book of Prime Number Records, 2nd ed. New York: Springer-Verlag, p. 74, 1989.
Links
- M. F. Hasler, Table of n, a(n) for n = 0..100
- Florentin Smarandache, Only Problems, Not Solutions!, Xiquan Publ. Hse., 1990, Problem 17.
- Eric Weisstein's World of Mathematics, Sierpiński Number of the First Kind.
Crossrefs
Programs
-
Mathematica
a(0) = 2; for n>0 Table[n^n+1,{n,1,20}] (* Alexander Adamchuk, Sep 11 2006 *)
-
Maxima
A014566[n]:=if n=0 then 2 else n^n+1$ makelist(A014566[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
PARI
A014566(n)=n^n+1 /* M. F. Hasler, Jan 21 2009 */
Formula
For n>0, resultant of x^n+1 and nx-1. - Ralf Stephan, Nov 20 2004
E.g.f.: exp(x) + 1/(1+LambertW(-x)). - Vaclav Kotesovec, Dec 20 2014
Sum_{n>=1} 1/a(n) = A134883. - Amiram Eldar, Nov 15 2020
Extensions
More terms from Erich Friedman
Comments