cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014569 Super-3 Numbers (3n^3 contains substring '333' in its decimal expansion).

Original entry on oeis.org

261, 462, 471, 481, 558, 753, 1036, 1046, 1471, 1645, 1752, 1848, 1923, 1926, 1968, 2031, 2231, 2232, 2363, 2395, 2471, 2591, 2610, 3058, 3087, 3148, 3163, 3172, 3181, 3471, 3494, 3542, 3851, 3884, 4143, 4269, 4314, 4471, 4527, 4554, 4620, 4710, 4732
Offset: 1

Views

Author

Keywords

Comments

For any term a(n), all numbers a(n)*10^k, k >= 0, are also in the sequence. More interestingly, all numbers N == 471 (mod 1000) are in the sequence, since 471^3*3 == 333 (mod 1000). - M. F. Hasler, Jul 16 2024
Conjecture: a(n) ~ n. - Charles R Greathouse IV, Dec 04 2024

Examples

			1752 is in the sequence since 3 * 1752^3 = 161'333'13024.
		

References

  • C. A. Pickover, Keys to Infinity. New York: Wiley, p. 7, 1995.

Crossrefs

Cf. A032743-A032749 (similar for d=2, ..., 9).

Programs

  • Mathematica
    Select[Range[5000],MemberQ[Partition[IntegerDigits[3#^3],3,1],{3,3,3}]&] (* Harvey P. Dale, Feb 01 2013 *)
  • PARI
    select( {is_A014569(n, d=3, m=10^d, r=m\9*d)=n=d*n^d; until(r>n\=10, n%m==r && return(1))}, [0..4999]) \\ Using the (optional) 2nd arg d=2..9 allows to compute the sequences A032743-A032749. - M. F. Hasler, Jul 16 2024
    
  • Python
    is_A014569=lambda n, d=3: str(d)*d in str(d*n**d) # M. F. Hasler, Jul 16 2024

Formula

n < a(n) < 200n for n > 2. - Charles R Greathouse IV, Dec 04 2024

Extensions

Corrected and extended by Patrick De Geest, May 15 1998
Offset changed to 1 by M. F. Hasler, Jul 16 2024