A014573 Smallest k such that phi(x) = k has exactly n solutions, n>=0 with Carmichael conjecture.
3, 0, 1, 2, 4, 8, 12, 32, 36, 40, 24, 48, 160, 396, 2268, 704, 312, 72, 336, 216, 936, 144, 624, 1056, 1760, 360, 2560, 384, 288, 1320, 3696, 240, 768, 9000, 432, 7128, 4200, 480, 576, 1296, 1200, 15936, 3312, 3072, 3240, 864, 3120, 7344, 3888, 720, 1680
Offset: 0
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- Eric Weisstein's World of Mathematics, Carmichael's Totient Function conjecture
Programs
-
PARI
a(n) = if (n==1, 0, my(k=1); while (#invphi(k) != n, k++); k); \\ using invphi in PARI scripts link; Michel Marcus, Oct 09 2023
Extensions
Link fixed by Charles R Greathouse IV, Oct 06 2009
Comments