cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A090555 Erroneous version of A014573.

Original entry on oeis.org

10, 1, 2, 4, 8, 16
Offset: 1

Views

Author

Keywords

A007374 Smallest k such that phi(x) = k has exactly n solutions, n>=2.

Original entry on oeis.org

1, 2, 4, 8, 12, 32, 36, 40, 24, 48, 160, 396, 2268, 704, 312, 72, 336, 216, 936, 144, 624, 1056, 1760, 360, 2560, 384, 288, 1320, 3696, 240, 768, 9000, 432, 7128, 4200, 480, 576, 1296, 1200, 15936, 3312, 3072, 3240, 864, 3120, 7344, 3888, 720, 1680, 4992
Offset: 2

Views

Author

Keywords

Comments

The Carmichael Totient Conjecture is that there is no k such that phi(x) = k has a unique solution x. So a(1) does not exist.
Ford proved that a(n) exists for all n > 1. - Charles R Greathouse IV, Oct 13 2014

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 234, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially same as A014573. Records in A105207, A105208.

Programs

  • Mathematica
    a = Table[ 0, {10^5} ]; Do[ s = EulerPhi[ n ]; If[ s < 100001, a[ [ s ] ]++ ], {n, 1, 10^6} ]; Do[ k = 1; While[ a[ [ k ] ] != n, k++ ]; Print[ k ], {n, 2, 75} ]
  • PARI
    v=vectorsmall(10^6);for(n=1,1e7,t=eulerphi(n);if(t<=#v,v[t]++))
    u=vector(100);for(i=1,#v,t=v[i];if(t&&t<=#u&&u[t]==0,u[t]=i)); u[2..#u]
    \\ Charles R Greathouse IV, Oct 13 2014

A097942 Highly totient numbers: each number k on this list has more solutions to the equation phi(x) = k than any preceding k (where phi is Euler's totient function, A000010).

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 48, 72, 144, 240, 432, 480, 576, 720, 1152, 1440, 2880, 4320, 5760, 8640, 11520, 17280, 25920, 30240, 34560, 40320, 51840, 60480, 69120, 80640, 103680, 120960, 161280, 181440, 207360, 241920, 362880, 483840, 725760, 967680
Offset: 1

Views

Author

Alonso del Arte, Sep 05 2004

Keywords

Comments

If you inspect PhiAnsYldList after running the Mathematica program below, the zeros with even-numbered indices should correspond to the nontotients (A005277).
Where records occur in A014197. - T. D. Noe, Jun 13 2006
Cf. A131934.

Examples

			a(4) = 8 since phi(x) = 8 has the solutions {15, 16, 20, 24, 30}, one more solution than a(3) = 4 for which phi(x) = 4 has solutions {5, 8, 10, 12}.
		

Crossrefs

A subsequence of A007374.

Programs

  • Maple
    HighlyTotientNumbers := proc(n) # n > 1 is search maximum
    local L, m, i, r; L := NULL; m := 0;
    for i from 1 to n do
      r := nops(numtheory[invphi](i));
      if r > m then L := L,[i,r]; m := r fi
    od; [L] end:
    A097942_list := n -> seq(s[1], s = HighlyTotientNumbers(n));
    A097942_list(500); # Peter Luschny, Sep 01 2012
  • Mathematica
    searchMax = 2000; phiAnsYldList = Table[0, {searchMax}]; Do[phiAns = EulerPhi[m]; If[phiAns <= searchMax, phiAnsYldList[[phiAns]]++ ], {m, 1, searchMax^2}]; highlyTotientList = {1}; currHigh = 1; Do[If[phiAnsYldList[[n]] > phiAnsYldList[[currHigh]], highlyTotientList = {highlyTotientList, n}; currHigh = n], {n, 2, searchMax}]; Flatten[highlyTotientList]
  • PARI
    { A097942_list(n) = local(L, m, i, r);
      m = 0;
      for(i=1, n,
    \\ from Max Alekseyev, http://home.gwu.edu/~maxal/gpscripts/
       r = numinvphi(i);
       if(r > m, print1(i,", "); m = r) );
    } \\ Peter Luschny, Sep 01 2012
  • Sage
    def HighlyTotientNumbers(n) : # n > 1 is search maximum.
        R = {}
        for i in (1..n^2) :
            r = euler_phi(i)
            if r <= n :
                R[r] = R[r] + 1 if r in R else 1
        # print R.keys()   # A002202
        # print R.values() # A058277
        P = []; m = 1
        for l in sorted(R.keys()) :
            if R[l] > m : m = R[l]; P.append((l,m))
        # print [l[0] for l in P] # A097942
        # print [l[1] for l in P] # A131934
        return P
    A097942_list = lambda n: [s[0] for s in HighlyTotientNumbers(n)]
    A097942_list(500) # Peter Luschny, Sep 01 2012
    

Extensions

Edited and extended by Robert G. Wilson v, Sep 07 2004

A072075 Smallest solution to phi(x) = 10^n where phi(x) = A000010(x).

Original entry on oeis.org

1, 11, 101, 1111, 10291, 100651, 1004251, 10165751, 100064101, 1000078501, 10000222501, 100062501601, 1000062516001, 10000062660001, 100002441447211, 1003922328562757, 10000390625025601, 100000002482366251, 1000000002851006251, 10000062500000160001
Offset: 0

Views

Author

Labos Elemer, Jun 13 2002

Keywords

Examples

			n=3: a(3)=1111 because InvPhi[1000]= {1111,1255,1375,1875,2008,2222,2500,2510,2750,3012,3750}.
		

Crossrefs

Extensions

More terms from Max Alekseyev, Apr 26 2010
a(18)-a(19) from Donovan Johnson, Feb 02 2012

A072074 Number of integers k such that phi(k) = 10^n.

Original entry on oeis.org

2, 2, 4, 11, 16, 24, 43, 63, 94, 152, 224, 324, 464, 644, 897, 1271, 1790, 2521, 3501, 4814, 6535, 8779, 11739, 15585, 20625, 27166, 35588, 46363, 60065, 77424, 99337, 127020, 161930, 205847, 260929, 329782, 415533, 522173, 654548, 818278, 1020391
Offset: 0

Views

Author

Labos Elemer, Jun 13 2002

Keywords

Comments

a(n) is the coefficient of x^n*y^n in Product_p Sum_{u, v} x^u*y^v, where the product is taken over all primes p and the sum is taken over such u, v that 2^u*5^v = phi(p^k) for some nonnegative integer k. - Max Alekseyev, Apr 26 2010
Elaborating on above comment, primes p must be in A077497 and k must be 1 for primes other than 2 and 5. - Ray Chandler, Feb 12 2012

Examples

			n=3: a(3)=11 because InvPhi(1000) = {1111, 1255, 1375, 1875, 2008, 2222, 2500, 2510, 2750, 3012, 3750}.
		

Crossrefs

Programs

  • Maple
    [seq(nops(invphi(10^i)),i=1..8)];
  • PARI
    a(n) = #invphi(10^n); \\ for invphi see Alekseyev link \\ Michel Marcus, May 14 2020

Formula

a(n) = Card{x : A000010(x)=10^n}.

Extensions

More terms from Max Alekseyev, Apr 26 2010

A072076 Largest k such that EulerPhi(k) = 10^n.

Original entry on oeis.org

2, 22, 250, 3750, 41250, 414150, 4166250, 42281250, 438281250, 4400343750, 44266406250, 449238281250, 4510352343750, 45373066406250, 455545586718750, 4555455867187500, 45555287544813750, 455552875448137500, 4566844506855468750, 45668445068554687500
Offset: 0

Views

Author

Labos Elemer, Jun 13 2002

Keywords

Examples

			n=3: a(3)=3750 because InvPhi(1000) = {1111, 1255, 1375, 1875, 2008, 2222, 2500, 2510, 2750, 3012, 3750}.
		

Crossrefs

Formula

a(n) = Max{k; A000010(k) = 10^n}.

Extensions

More terms from Max Alekseyev, Apr 26 2010

A090556 Beginning with 1, a(n) = least number m > a(n-1) such that phi(a(n-1)) divides phi(m).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 10, 12, 13, 21, 26, 28, 35, 39, 45, 52, 56, 65, 97, 119, 153, 193, 221, 291, 357, 386, 388, 416, 442, 448, 476, 485, 579, 595, 663, 765, 769, 965, 1105, 1455, 1538, 1544, 1552, 1649, 1799, 2307, 2313, 2895, 3076, 3088, 3104, 3281, 3341, 3845, 4947
Offset: 1

Views

Author

Amarnath Murthy, Dec 10 2003

Keywords

Crossrefs

Programs

  • Mathematica
    NestList[Function[n, SelectFirst[Range[n + 1, 10^4], Divisible[EulerPhi@ #, EulerPhi@ n] &]], 1, 54] (* Michael De Vlieger, May 01 2016, Version 10 *)

Formula

a(1)=1, then a(n+1) = A069797(a(n)). - Ivan Neretin, May 01 2016

Extensions

Corrected and extended by Sam Handler (sam_5_5_5_0(AT)yahoo.com), Nov 03 2004

A090557 a(n) = phi(A090556(n)).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 4, 4, 12, 12, 12, 12, 24, 24, 24, 24, 24, 48, 96, 96, 96, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 384, 384, 384, 384, 384, 768, 768, 768, 768, 768, 768, 768, 1536, 1536, 1536, 1536, 1536, 1536, 1536, 1536, 3072, 3072, 3072, 3072, 3072
Offset: 1

Views

Author

Amarnath Murthy, Dec 10 2003

Keywords

Comments

Starting at n=9, all known terms are of the form 3*2^k. - Ivan Neretin, May 01 2016

Crossrefs

Programs

  • Mathematica
    EulerPhi@ NestList[Function[n, SelectFirst[Range[n + 1, 10^4], Divisible[EulerPhi@ #, EulerPhi@ n] &]], 1, 55] (* Michael De Vlieger, May 01 2016, Version 10 *)

Extensions

More terms from David Wasserman, Jan 04 2006
Missing term a(1) prepended by Ivan Neretin, May 01 2016
Showing 1-8 of 8 results.