Original entry on oeis.org
1, 2, 4, 8, 12, 32, 36, 40, 48, 160, 396, 2268, 2560, 3696, 9000, 15936, 17640, 22848, 29160, 38640, 81216, 91872, 153120, 225280, 228960, 410112, 494592, 540672, 619920, 900000, 1111968, 1282176, 1350720, 1932000, 2153088, 4093440, 5634720
Offset: 1
Original entry on oeis.org
2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 26, 30, 33, 41, 52, 67, 69, 78, 80, 105, 122, 123, 139, 145, 201, 208, 216, 242, 312, 313, 337, 348, 354, 414, 528, 569, 599, 779, 783, 878, 925, 992, 1024, 1103, 1106, 1270, 1283, 1306, 1315, 1508, 1839, 2223
Offset: 1
A224531
Triangle in which row n > 1 has the n values x such that phi(x) = A007374(n), We define the first row to be 0.
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 5, 8, 10, 12, 15, 16, 20, 24, 30, 13, 21, 26, 28, 36, 42, 51, 64, 68, 80, 96, 102, 120, 37, 57, 63, 74, 76, 108, 114, 126, 41, 55, 75, 82, 88, 100, 110, 132, 150, 35, 39, 45, 52, 56, 70, 72, 78, 84, 90, 65, 104, 105, 112, 130, 140, 144, 156, 168, 180, 210
Offset: 1
Triangle:
0,
1, 2,
3, 4, 6,
5, 8, 10, 12,
15, 16, 20, 24, 30,
13, 21, 26, 28, 36, 42,
51, 64, 68, 80, 96, 102, 120,
37, 57, 63, 74, 76, 108, 114, 126,
41, 55, 75, 82, 88, 100, 110, 132, 150
-
Needs["CNT`"]; nn = 10; t = Table[{}, {nn}]; n = 0; t[[1]] = {0}; left = nn - 1; While[left > 0, n++; p = PhiInverse[n]; cnt = Length[p]; If[cnt <= nn && t[[cnt]] == {}, t[[cnt]] = p; left--]]; t
A224532
Largest number k such that phi(k) = A007374(n).
Original entry on oeis.org
2, 6, 12, 30, 42, 120, 126, 150, 90, 210, 660, 1242, 7938, 2760, 1014, 270, 1470, 810, 3318, 630, 2370, 4830, 7590, 1386, 11220, 1680, 1260, 5082, 13890, 1050, 3570, 33750, 1890, 26082, 14058, 2310, 2730, 5670, 5250, 70140, 12690, 14280, 12474, 3990, 11850
Offset: 2
-
Needs["CNT`"]; nn = 50; t = Table[0, {nn}]; n = 0; left = nn - 1; While[left > 0, n++; cnt = Length[PhiInverse[n]]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = n; left--]]; Join[{0}, Table[PhiInverse[n][[-1]], {n, Rest[t]}]]
A097942
Highly totient numbers: each number k on this list has more solutions to the equation phi(x) = k than any preceding k (where phi is Euler's totient function, A000010).
Original entry on oeis.org
1, 2, 4, 8, 12, 24, 48, 72, 144, 240, 432, 480, 576, 720, 1152, 1440, 2880, 4320, 5760, 8640, 11520, 17280, 25920, 30240, 34560, 40320, 51840, 60480, 69120, 80640, 103680, 120960, 161280, 181440, 207360, 241920, 362880, 483840, 725760, 967680
Offset: 1
a(4) = 8 since phi(x) = 8 has the solutions {15, 16, 20, 24, 30}, one more solution than a(3) = 4 for which phi(x) = 4 has solutions {5, 8, 10, 12}.
-
HighlyTotientNumbers := proc(n) # n > 1 is search maximum
local L, m, i, r; L := NULL; m := 0;
for i from 1 to n do
r := nops(numtheory[invphi](i));
if r > m then L := L,[i,r]; m := r fi
od; [L] end:
A097942_list := n -> seq(s[1], s = HighlyTotientNumbers(n));
A097942_list(500); # Peter Luschny, Sep 01 2012
-
searchMax = 2000; phiAnsYldList = Table[0, {searchMax}]; Do[phiAns = EulerPhi[m]; If[phiAns <= searchMax, phiAnsYldList[[phiAns]]++ ], {m, 1, searchMax^2}]; highlyTotientList = {1}; currHigh = 1; Do[If[phiAnsYldList[[n]] > phiAnsYldList[[currHigh]], highlyTotientList = {highlyTotientList, n}; currHigh = n], {n, 2, searchMax}]; Flatten[highlyTotientList]
-
{ A097942_list(n) = local(L, m, i, r);
m = 0;
for(i=1, n,
\\ from Max Alekseyev, http://home.gwu.edu/~maxal/gpscripts/
r = numinvphi(i);
if(r > m, print1(i,", "); m = r) );
} \\ Peter Luschny, Sep 01 2012
-
def HighlyTotientNumbers(n) : # n > 1 is search maximum.
R = {}
for i in (1..n^2) :
r = euler_phi(i)
if r <= n :
R[r] = R[r] + 1 if r in R else 1
# print R.keys() # A002202
# print R.values() # A058277
P = []; m = 1
for l in sorted(R.keys()) :
if R[l] > m : m = R[l]; P.append((l,m))
# print [l[0] for l in P] # A097942
# print [l[1] for l in P] # A131934
return P
A097942_list = lambda n: [s[0] for s in HighlyTotientNumbers(n)]
A097942_list(500) # Peter Luschny, Sep 01 2012
A100827
Highly cototient numbers: records for a(n) in A063741.
Original entry on oeis.org
2, 4, 8, 23, 35, 47, 59, 63, 83, 89, 113, 119, 167, 209, 269, 299, 329, 389, 419, 509, 629, 659, 779, 839, 1049, 1169, 1259, 1469, 1649, 1679, 1889, 2099, 2309, 2729, 3149, 3359, 3569, 3989, 4199, 4289, 4409, 4619, 5249, 5459, 5879, 6089, 6509, 6719, 6929
Offset: 1
a(3) = 8 since x - phi(x) = 8 has three solutions, {12, 14, 16}, one more than a(2) = 4 which has two solutions, {6, 8}.
-
searchMax = 4000; coPhiAnsYldList = Table[0, {searchMax}]; Do[coPhiAns = m - EulerPhi[m]; If[coPhiAns <= searchMax, coPhiAnsYldList[[coPhiAns]]++ ], {m, 1, searchMax^2}]; highlyCototientList = {2}; currHigh = 2; Do[If[coPhiAnsYldList[[n]] > coPhiAnsYldList[[currHigh]], highlyCototientList = {highlyCototientList, n}; currHigh = n], {n, 2, searchMax}]; Flatten[highlyCototientList]
A014573
Smallest k such that phi(x) = k has exactly n solutions, n>=0 with Carmichael conjecture.
Original entry on oeis.org
3, 0, 1, 2, 4, 8, 12, 32, 36, 40, 24, 48, 160, 396, 2268, 704, 312, 72, 336, 216, 936, 144, 624, 1056, 1760, 360, 2560, 384, 288, 1320, 3696, 240, 768, 9000, 432, 7128, 4200, 480, 576, 1296, 1200, 15936, 3312, 3072, 3240, 864, 3120, 7344, 3888, 720, 1680
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
Cf.
A000010. Essentially same as
A007374, which is the main entry for this sequence.
-
a(n) = if (n==1, 0, my(k=1); while (#invphi(k) != n, k++); k); \\ using invphi in PARI scripts link; Michel Marcus, Oct 09 2023
A361970
a(n) is the least number k such that the equation uphi(x) = k has exactly n solutions, or -1 if no such k exists, where uphi is the unitary totient function (A047994).
Original entry on oeis.org
5, 1, 2, 6, 8, 12, 36, 156, 24, 552, 168, 48, 96, 420, 120, 192, 3264, 144, 384, 336, 1536, 288, 360, 240, 672, 1200, 3888, 1080, 4896, 1584, 480, 576, 7056, 4992, 864, 1872, 1152, 3120, 960, 2400, 720, 2520, 30960, 2688, 19968, 1680, 1728, 1920, 2016, 2304, 12000
Offset: 0
-
solnum[n_] := Length[invUPhi[n]]; seq[len_, kmax_] := Module[{s = Table[-1, {len}], c = 0, k = 1, ind}, While[k < kmax && c < len, ind = solnum[k] + 1; If[ind <= len && s[[ind]] < 0, c++; s[[ind]] = k]; k++]; s]; seq[50, 10^5] (* using the function invUPhi from A361966 *)
A085713
Consider numbers k such that phi(x) = k has exactly 3 solutions and they are (3*p, 4*p, 6*p) where p is 1 or a prime. Sequence gives values of p.
Original entry on oeis.org
1, 23, 29, 47, 53, 59, 71, 83, 103, 107, 131, 149, 167, 173, 179, 191, 197, 223, 227, 239, 263, 269, 283, 293, 311, 317, 347, 359, 373, 383, 389, 419, 431, 443, 467, 479, 491, 503, 509, 557, 563, 569, 587, 599, 643, 647, 653, 659, 677, 683, 709, 719
Offset: 1
83 is a term because the three solutions (249,332,498) to phi(x) = 164 can be written as (3*83, 4*83, 6*83).
-
import Data.List.Ordered (insertBag)
import Data.List (groupBy); import Data.Function (on)
a085713 n = a085713_list !! (n-1)
a085713_list = 1 : r yx3ss where
r (ps:pss) | a010051' cd == 1 &&
map (flip div cd) ps == [3, 4, 6] = cd : r pss
| otherwise = r pss where cd = foldl1 gcd ps
yx3ss = filter ((== 3) . length) $
map (map snd) $ groupBy ((==) `on` fst) $
f [1..] a002110_list []
where f is'@(i:is) ps'@(p:ps) yxs
| i < p = f is ps' $ insertBag (a000010' i, i) yxs
| otherwise = yxs' ++ f is' ps yxs''
where (yxs', yxs'') = span ((<= a000010' i) . fst) yxs
-- Reinhard Zumkeller, Nov 25 2015
-
t = Table[ EulerPhi[n], {n, 1, 5000}]; u = Union[ Select[t, Count[t, # ] == 3 &]]; a = {}; Do[k = 1; While[ EulerPhi[3k] != u[[n]], k++ ]; AppendTo[a, k], {n, 1, 60}]; Sort[a]
-
is(p) = if(p > 1 && !isprime(p), 0, invphi(eulerphi(3*p)) == [3*p, 4*p, 6*p]); \\ Amiram Eldar, Nov 19 2024, using Max Alekseyev's invphi.gp
A130670
Smallest k such that phi(x) = k has exactly n even solutions.
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 24, 80, 48, 160, 72, 216, 96, 792, 360, 144, 192, 1056, 1512, 1080, 240, 288, 432, 1248, 3200, 1200, 768, 3120, 480, 576, 2496, 720, 1536, 864, 6000, 3600, 2016, 3072, 960, 3168, 3744, 1152, 11664, 2688, 2400, 2160, 9792, 1728, 6240, 9072
Offset: 1
a(3) = 4 because there are 3 even solutions (8, 10, 12) of phi(x) = 4 and for all k < 4 the number of even solutions of phi(x) = k is unequal to 3.
Showing 1-10 of 18 results.
Comments