A130669
Smallest k such that phi(x) = k has exactly n odd solutions.
Original entry on oeis.org
1, 6, 24, 60, 144, 72, 216, 480, 600, 240, 432, 1152, 1296, 1080, 4608, 2016, 720, 2520, 2400, 1440, 5184, 4032, 2880, 5280, 7776, 2160, 5760, 21840, 7560, 9600, 6720, 16560, 5040, 15552, 6480, 13440, 10800, 11520, 20736, 4320, 18144, 12096, 28512, 16800
Offset: 1
a(3) = 24 because there are 3 odd solutions (35, 39, 45) to phi(x) = 24 and for every k < 24 the number of odd solutions to phi(x) = k is unequal to 3.
A247651
Maximum number of binary strings of length 2n obtained from a partition of n.
Original entry on oeis.org
1, 2, 3, 12, 30, 60, 210, 840, 2520, 7560, 27720, 83160, 240240, 840840, 2702700, 10810800, 36756720, 122522400, 465585120, 1551950400, 4888643760, 19554575040, 74959204320, 257002986240, 936990054000, 3480248772000, 11745839605500, 40477970332800, 146732642456400, 524045151630000
Offset: 0
n=0 gives the empty string.
n=1 and the only possible partition generate 01 and 10.
For n=2, both possible partitions generate 3 strings (0011,0110 and 1100, and respectively 0101, 1001 and 1010, based on runs of 1's).
For n=3, the optimal partition is {1,2}, generating 12 strings (based on runs of 1's: 001011, 001101, 010011, 010110, 011001, 011010, 100011, 100110, 101100, 110001, 110010, 110100).
-
nseq[p_]:=FactorialPower[Total[p]+1,Length[p]]/Apply[Times,Map[Factorial[Count[p,#1]]&,Range[Max[Length[p]]]]];
a[n_]:=Max[Map[nseq,IntegerPartitions[n]]]
Table[a[n],{n,0,20}] (* after A130670 *)
A250029
Maximum number of binary strings with symmetrically partitioned n 1's and n 0's, counted up to isomorphism.
Original entry on oeis.org
1, 1, 1, 4, 9, 16, 36, 144, 400, 900, 3600, 11025, 28224, 78400, 254016, 705600, 2286144, 6350400, 25401600, 85377600, 250905600, 768398400, 3073593600, 10600761600, 32464832400, 129859329600, 456536705625
Offset: 0
n=0 gives the empty string.
n=1 and the only possible partition generate 01 (and the isomorphic 10).
For n=2, both possible partitions generate, up to isomorphism, 1 string, 0011 (1100), and respectively 0101 (1010).
For n=3, the optimal partition is {1,2}, generating, up to isomorphism, 4 strings: 001011 (110100), 001101 (110010), 010011 (101100) and 011001 (100110).
For n=4, the optimal partition is {1,1,2}, generating, up to isomorphism, 9 strings: 00101011 (11010100), 00101101 (11010010), 00110101 (11001010), 01001011 (10110100), 01001101 (10110010), 01010011 (10101100), 01011001 (10100110), 01100101 (10011010) and 01101001 (10010110).
-
dualseq[p_]:=Factorial[Length[p]]^2/Apply[Times,Map[Factorial[Count[p,#1]]&,Range[Max[Length[p]]]]]^2
a[n_]:=Max[Map[dualseq,IntegerPartitions[n]]]
Table[a[n],{n,0,25}] (* after A130670 *)
Showing 1-3 of 3 results.
Comments