cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A209195 Smallest prime factor of the n-th highly totient number (A097942(n)) plus 1.

Original entry on oeis.org

2, 3, 5, 3, 13, 5, 7, 73, 5, 241, 433, 13, 577, 7, 1153, 11, 43, 29, 7, 8641, 41, 11, 7, 30241, 17, 61, 47, 31, 13, 11, 103681, 73, 161281, 13, 7, 241921, 19, 41, 293, 11, 17, 1451521, 31, 2177281, 83, 2903041, 11, 4354561, 109, 5806081, 13, 8709121, 9676801
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2012

Keywords

Crossrefs

Formula

a(n) = A020639(A097942(n) + 1). - Amiram Eldar, Jul 08 2019

Extensions

More terms from Amiram Eldar, Jul 08 2019

A014197 Number of numbers m with Euler phi(m) = n.

Original entry on oeis.org

2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, 0, 0, 0, 0, 0, 2, 0, 10, 0, 2, 0, 6, 0, 0, 0, 6, 0, 0, 0, 3
Offset: 1

Views

Author

Keywords

Comments

Carmichael conjectured that there are no 1's in this sequence. - Jud McCranie, Oct 10 2000
Number of cyclotomic polynomials of degree n. - T. D. Noe, Aug 15 2003
Let v == 0 (mod 24), w = v + 24, and v < k < q < w, where k and q are integer. It seems that, for most values of v, there is no b such that b = a(k) + a(q) and b > a(v) + a(w). The first case where b > a(v) + a(w) occurs at v = 888: b = a(896) + a(900) = 15 + 4, b > a(888) + a(912), or 19 > 8 + 7. The first case where v < n < w and a(n) > a(v) + a(w) occurs at v = 2232: a(2240) > a(2232) + a(2256), or 27 > 7 + 8. - Sergey Pavlov, Feb 05 2017
One elementary result relating to phi(m) is that if m is odd, then phi(m)=phi(2m) because 1 and 2 both have phi value 1 and phi is multiplicative. - Roderick MacPhee, Jun 03 2017

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B39, pp. 144-146.
  • Joe Roberts, Lure of The Integers, The Mathematical Association of America, 1992, entry 32, page 182.

Crossrefs

Cf. A000010, A002202, A032446 (bisection), A049283, A051894, A055506, A057635, A057826, A058277 (nonzero terms), A058341, A063439, A066412, A070243 (partial sums), A070633, A071386 (positions of odd terms), A071387, A071388 (positions of primes), A071389 (where prime(n) occurs for the first time), A082695, A097942 (positions of records), A097946, A120963, A134269, A219930, A280611, A280709, A280712, A296655 (positions of positive even terms), A305353, A305656, A319048, A322019.
For records see A131934.
Column 1 of array A320000.

Programs

  • GAP
    a := function(n)
    local S, T, R, max, i, k, r;
    S:=[];
    for i in DivisorsInt(n)+1 do
        if IsPrime(i)=true then
            S:=Concatenation(S,[i]);
        fi;
    od;
    T:=[];
    for k in [1..Size(S)] do
        T:=Concatenation(T,[S[k]/(S[k]-1)]);
    od;
    max := n*Product(T);
    R:=[];
    for r in [1..Int(max)] do
        if Phi(r)=n then
            R:=Concatenation(R,[r]);
        fi;
    od;
    return Size(R);
    end; # Miles Englezou, Oct 22 2024
  • Magma
    [#EulerPhiInverse(n): n in [1..100]]; // Marius A. Burtea, Sep 08 2019
    
  • Maple
    with(numtheory): A014197:=n-> nops(invphi(n)): seq(A014197(n), n=1..200);
  • Mathematica
    a[1] = 2; a[m_?OddQ] = 0; a[m_] := Module[{p, nmax, n, k}, p = Select[ Divisors[m]+1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; k = 0; While[n <= nmax, If[EulerPhi[n] == m, k++]; n++]; k]; Array[a, 92] (* Jean-François Alcover, Dec 09 2011, updated Apr 25 2016 *)
    With[{nn = 116}, Function[s, Function[t, Take[#, nn] &@ ReplacePart[t, Map[# -> Length@ Lookup[s, #] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, Floor[nn^(3/2)] + 10]] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A014197(n,m=1) = { n==1 && return(1+(m<2)); my(p,q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0,valuation(q=n\d,p=d+1), A014197(q\p^i,p))))} \\ M. F. Hasler, Oct 05 2009
    
  • PARI
    a(n) = invphiNum(n); \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
    
  • Python
    from sympy import totient, divisors, isprime, prod
    def a(m):
        if m == 1: return 2
        if m % 2: return 0
        X = (x + 1 for x in divisors(m))
        nmax=m*prod(i/(i - 1) for i in X if isprime(i))
        n=m
        k=0
        while n<=nmax:
            if totient(n)==m:k+=1
            n+=1
        return k
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 18 2017, after Mathematica code
    

Formula

Dirichlet g.f.: Sum_{n>=1} a(n)*n^-s = zeta(s)*Product_(1+1/(p-1)^s-1/p^s). - Benoit Cloitre, Apr 12 2003
Limit_{n->infinity} (1/n) * Sum_{k=1..n} a(k) = zeta(2)*zeta(3)/zeta(6) = 1.94359643682075920505707036... (see A082695). - Benoit Cloitre, Apr 12 2003
From Christopher J. Smyth, Jan 08 2017: (Start)
Euler transform = Product_{n>=1} (1-x^n)^(-a(n)) = g.f. of A120963.
Product_{n>=1} (1+x^n)^a(n)
= Product_{n>=1} ((1-x^(2n))/(1-x^n))^a(n)
= Product_{n>=1} (1-x^n)^(-A280712(n))
= Euler transform of A280712 = g.f. of A280611.
(End)
a(A000010(n)) = A066412(n). - Antti Karttunen, Jul 18 2017
From Antti Karttunen, Dec 04 2018: (Start)
a(A000079(n)) = A058321(n).
a(A000142(n)) = A055506(n).
a(A017545(n)) = A063667(n).
a(n) = Sum_{d|n} A008683(n/d)*A070633(d).
a(n) = A056239(A322310(n)).
(End)

A007374 Smallest k such that phi(x) = k has exactly n solutions, n>=2.

Original entry on oeis.org

1, 2, 4, 8, 12, 32, 36, 40, 24, 48, 160, 396, 2268, 704, 312, 72, 336, 216, 936, 144, 624, 1056, 1760, 360, 2560, 384, 288, 1320, 3696, 240, 768, 9000, 432, 7128, 4200, 480, 576, 1296, 1200, 15936, 3312, 3072, 3240, 864, 3120, 7344, 3888, 720, 1680, 4992
Offset: 2

Views

Author

Keywords

Comments

The Carmichael Totient Conjecture is that there is no k such that phi(x) = k has a unique solution x. So a(1) does not exist.
Ford proved that a(n) exists for all n > 1. - Charles R Greathouse IV, Oct 13 2014

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 234, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially same as A014573. Records in A105207, A105208.

Programs

  • Mathematica
    a = Table[ 0, {10^5} ]; Do[ s = EulerPhi[ n ]; If[ s < 100001, a[ [ s ] ]++ ], {n, 1, 10^6} ]; Do[ k = 1; While[ a[ [ k ] ] != n, k++ ]; Print[ k ], {n, 2, 75} ]
  • PARI
    v=vectorsmall(10^6);for(n=1,1e7,t=eulerphi(n);if(t<=#v,v[t]++))
    u=vector(100);for(i=1,#v,t=v[i];if(t&&t<=#u&&u[t]==0,u[t]=i)); u[2..#u]
    \\ Charles R Greathouse IV, Oct 13 2014

A036913 Sparsely totient numbers; numbers n such that m > n implies phi(m) > phi(n).

Original entry on oeis.org

2, 6, 12, 18, 30, 42, 60, 66, 90, 120, 126, 150, 210, 240, 270, 330, 420, 462, 510, 630, 660, 690, 840, 870, 1050, 1260, 1320, 1470, 1680, 1890, 2310, 2730, 2940, 3150, 3570, 3990, 4620, 4830, 5460, 5610, 5670, 6090, 6930, 7140, 7350, 8190, 9240, 9660
Offset: 1

Views

Author

Keywords

Comments

The paper by Masser and Shiu lists 150 terms of this sequence less than 10^6. For odd prime p, they show that p# and p*p# are in this sequence, where p# denotes the primorial (A002110). - T. D. Noe, Jun 14 2006
Conjecture: Except for 2 and 18, all terms are Zumkeller numbers (A083207). Verified for the first 1800 terms. - Ivan N. Ianakiev, Sep 04 2022

Examples

			This sequence contains 60 because of all the numbers whose totient is <=16, 60 is the largest such number. [From _Graeme McRae_, Feb 12 2009]
From _Michael De Vlieger_, Jun 25 2017: (Start)
Positions of primorials A002110(k) in a(n):
     n     k       a(n) = A002110(k)
  ----------------------------------
     1     1                       2
     2     2                       6
     5     3                      30
    13     4                     210
    31     5                    2310
    69     6                   30030
   136     7                  510510
   231     8                 9699690
   374     9               223092870
   578    10              6469693230
   836    11            200560490130
  1169    12           7420738134810
  1591    13         304250263527210
  2149    14       13082761331670030
  2831    15      614889782588491410
  3667    16    32589158477190044730
  4661    17  1922760350154212639070
(End)
		

Crossrefs

Cf. A097942 (highly totient numbers). Records in A006511 (see also A132154).

Programs

  • Mathematica
    nn=10000; lastN=Table[0,{nn}]; Do[e=EulerPhi[n]; If[e<=nn, lastN[[e]]=n], {n,10nn}]; mx=0; lst={}; Do[If[lastN[[i]]>mx, mx=lastN[[i]]; AppendTo[lst,mx]], {i,Length[lastN]}]; lst (* T. D. Noe, Jun 14 2006 *)

A100827 Highly cototient numbers: records for a(n) in A063741.

Original entry on oeis.org

2, 4, 8, 23, 35, 47, 59, 63, 83, 89, 113, 119, 167, 209, 269, 299, 329, 389, 419, 509, 629, 659, 779, 839, 1049, 1169, 1259, 1469, 1649, 1679, 1889, 2099, 2309, 2729, 3149, 3359, 3569, 3989, 4199, 4289, 4409, 4619, 5249, 5459, 5879, 6089, 6509, 6719, 6929
Offset: 1

Views

Author

Alonso del Arte, Jan 06 2005

Keywords

Comments

Each number k on this list has more solutions to the equation x - phi(x) = k (where phi is Euler's totient function, A000010) than any preceding k except 1.
This sequence is a subset of A063741. As noted in that sequence, there are infinitely many solutions to x - phi(x) = 1. Unlike A097942, the highly totient numbers, this sequence has many odd numbers besides 1.
With the expection of 2, 4, 8, all of the known terms are congruent to -1 mod a primorial (A002110). The specific primorial satisfying this congruence would result in a sequence similar to A080404 a(n)=A007947[A055932(n)]. - Wilfredo Lopez (chakotay147138274(AT)yahoo.com), Dec 28 2006
Because most of the solutions to x - phi(x) = k are semiprimes p*q with p+q=k+1, it appears that this sequence eventually has terms that are one less than the Goldbach-related sequence A082917. In fact, terms a(108) to a(176) are A082917(n)-1 for n=106..174. [T. D. Noe, Mar 16 2010] This holds through a(229). [Jud McCranie, May 18 2017]

Examples

			a(3) = 8 since x - phi(x) = 8 has three solutions, {12, 14, 16}, one more than a(2) = 4 which has two solutions, {6, 8}.
		

Crossrefs

Programs

  • Mathematica
    searchMax = 4000; coPhiAnsYldList = Table[0, {searchMax}]; Do[coPhiAns = m - EulerPhi[m]; If[coPhiAns <= searchMax, coPhiAnsYldList[[coPhiAns]]++ ], {m, 1, searchMax^2}]; highlyCototientList = {2}; currHigh = 2; Do[If[coPhiAnsYldList[[n]] > coPhiAnsYldList[[currHigh]], highlyCototientList = {highlyCototientList, n}; currHigh = n], {n, 2, searchMax}]; Flatten[highlyCototientList]

Extensions

More terms from Robert G. Wilson v, Jan 08 2005

A131934 Records in A014197.

Original entry on oeis.org

2, 3, 4, 5, 6, 10, 11, 17, 21, 31, 34, 37, 38, 49, 54, 72, 98, 126, 129, 176, 178, 247, 276, 281, 331, 359, 399, 441, 454, 525, 558, 692, 718, 734, 764, 1023, 1138, 1485, 1755, 2008, 2166, 2590, 2702, 2733, 3169, 3687, 3802, 4133, 4604, 5025, 5841, 6019, 6311
Offset: 1

Views

Author

N. J. A. Sloane, Nov 05 2007

Keywords

Crossrefs

Programs

Formula

a(n) = A014197(A097942(n)). - R. J. Mathar, Nov 07 2007

Extensions

More terms from R. J. Mathar, Nov 07 2007
Deleted my csh program which is unstable at high indices - R. J. Mathar, Mar 17 2010
Corrected and extended by T. D. Noe, Mar 16 2010

A361968 Unitary highly totient numbers: numbers k that have more solutions x to the equation uphi(x) = k than any smaller k, where uphi is the unitary totient function (A047994).

Original entry on oeis.org

1, 6, 8, 12, 24, 48, 96, 120, 144, 240, 480, 576, 720, 1440, 2880, 4320, 5760, 8640, 10080, 17280, 20160, 30240, 34560, 40320, 60480, 80640, 120960, 241920, 362880, 483840, 725760, 967680, 1209600, 1451520, 2177280, 2419200, 2903040, 3628800, 4354560, 4838400
Offset: 1

Views

Author

Amiram Eldar, Apr 01 2023

Keywords

Comments

Indices of records of A361967.
The corresponding numbers of solutions are 2, 3, 4, 5, 8, 11, ... (A361971).

Crossrefs

The unitary version of A097942.

Programs

  • Mathematica
    solnum[n_] :=  Length[invUPhi[n]]; seq[kmax_] := Module[{s = {}, solmax=0}, Do[sol = solnum[k]; If[sol > solmax, solmax = sol; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^5] (* using the function invUPhi from A361966 *)

A105207 Records in A007374.

Original entry on oeis.org

1, 2, 4, 8, 12, 32, 36, 40, 48, 160, 396, 2268, 2560, 3696, 9000, 15936, 17640, 22848, 29160, 38640, 81216, 91872, 153120, 225280, 228960, 410112, 494592, 540672, 619920, 900000, 1111968, 1282176, 1350720, 1932000, 2153088, 4093440, 5634720
Offset: 1

Views

Author

N. J. A. Sloane, Apr 13 2005

Keywords

Crossrefs

Extensions

More terms from T. D. Noe, Jun 13 2006

A105208 Where records occur in A007374.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 26, 30, 33, 41, 52, 67, 69, 78, 80, 105, 122, 123, 139, 145, 201, 208, 216, 242, 312, 313, 337, 348, 354, 414, 528, 569, 599, 779, 783, 878, 925, 992, 1024, 1103, 1106, 1270, 1283, 1306, 1315, 1508, 1839, 2223
Offset: 1

Views

Author

N. J. A. Sloane, Apr 13 2005

Keywords

Crossrefs

Extensions

More terms from T. D. Noe, Jun 13 2006.
Corrected and extended by N. J. A. Sloane, Oct 26 2012, at the suggestion of Donovan Johnson.

A362183 Unitary highly cototient numbers: numbers k that have more solutions x to the equation A323410(x) = k than any smaller k.

Original entry on oeis.org

0, 6, 10, 20, 31, 47, 53, 65, 77, 89, 113, 119, 149, 167, 179, 209, 293, 299, 329, 359, 389, 419, 479, 509, 599, 629, 779, 839, 989, 1049, 1139, 1259, 1469, 1559, 1649, 1679, 1889, 2099, 2309, 2729, 3149, 3359, 3569, 3989, 4289, 4409, 4619, 5249, 5459, 6089, 6509
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2023

Keywords

Comments

Indices of records of A362181.
The corresponding numbers of solutions are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 21, ... (A362184).

Crossrefs

The unitary version of A100827.
Similar sequences: A097942, A361968.

Programs

  • Mathematica
    ucototient[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); ucototient[1] = 0; With[{max = 300}, solnum = Table[0, {n, 1, max}]; Do[If[(i = ucototient[k]) <= max, solnum[[i]]++], {k, 2, max^2}]; s = {0}; solmax=1; Do[sol = solnum[[k]]; If[sol > solmax, solmax = sol; AppendTo[s, k]], {k, 2, max}]; s]
Showing 1-10 of 13 results. Next