cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A097649 Duplicate of A072075.

Original entry on oeis.org

1, 11, 101, 1111, 10291, 100651, 1004251, 10165751, 100064101, 1000078501, 10000222501, 100062501601, 1000062516001, 10000062660001, 100002441447211, 1003922328562757, 10000390625025601, 100000002482366251
Offset: 0

Views

Author

Keywords

Comments

Name was: a(n) is the smallest number m such that phi(m)=10^n.

A051445 Smallest k such that phi(k) = 2n, or 0 if there is no such k.

Original entry on oeis.org

3, 5, 7, 15, 11, 13, 0, 17, 19, 25, 23, 35, 0, 29, 31, 51, 0, 37, 0, 41, 43, 69, 47, 65, 0, 53, 81, 87, 59, 61, 0, 85, 67, 0, 71, 73, 0, 0, 79, 123, 83, 129, 0, 89, 0, 141, 0, 97, 0, 101, 103, 159, 107, 109, 121, 113, 0, 177, 0, 143, 0, 0, 127, 255, 131, 161, 0, 137
Offset: 1

Views

Author

Keywords

Comments

The zero values are easy to prove because of the bounds on the phi function.

Examples

			a(4) = 15 as phi(15) = 2*4 and no k < 15 has phi(k) = 2*4.
		

Crossrefs

Cf. A002181, A072075, A079695. For records see A132012, A132115.

Programs

  • PARI
    a(n)=n+=n;for(k=n+1, solve(x=n,if(n<20,99,5*n*log(log(n))), x/(exp(Euler)*log(log(x))+3/log(log(x)))-n), if(eulerphi(k)==n,return(k))); 0 \\ Charles R Greathouse IV, Dec 19 2011

Formula

a(10^n/2) = A072075(n). - R. J. Mathar, Dec 12 2024
a(A079695(n)) = 0. - David A. Corneth, Dec 12 2024

A072074 Number of integers k such that phi(k) = 10^n.

Original entry on oeis.org

2, 2, 4, 11, 16, 24, 43, 63, 94, 152, 224, 324, 464, 644, 897, 1271, 1790, 2521, 3501, 4814, 6535, 8779, 11739, 15585, 20625, 27166, 35588, 46363, 60065, 77424, 99337, 127020, 161930, 205847, 260929, 329782, 415533, 522173, 654548, 818278, 1020391
Offset: 0

Views

Author

Labos Elemer, Jun 13 2002

Keywords

Comments

a(n) is the coefficient of x^n*y^n in Product_p Sum_{u, v} x^u*y^v, where the product is taken over all primes p and the sum is taken over such u, v that 2^u*5^v = phi(p^k) for some nonnegative integer k. - Max Alekseyev, Apr 26 2010
Elaborating on above comment, primes p must be in A077497 and k must be 1 for primes other than 2 and 5. - Ray Chandler, Feb 12 2012

Examples

			n=3: a(3)=11 because InvPhi(1000) = {1111, 1255, 1375, 1875, 2008, 2222, 2500, 2510, 2750, 3012, 3750}.
		

Crossrefs

Programs

  • Maple
    [seq(nops(invphi(10^i)),i=1..8)];
  • PARI
    a(n) = #invphi(10^n); \\ for invphi see Alekseyev link \\ Michel Marcus, May 14 2020

Formula

a(n) = Card{x : A000010(x)=10^n}.

Extensions

More terms from Max Alekseyev, Apr 26 2010

A072076 Largest k such that EulerPhi(k) = 10^n.

Original entry on oeis.org

2, 22, 250, 3750, 41250, 414150, 4166250, 42281250, 438281250, 4400343750, 44266406250, 449238281250, 4510352343750, 45373066406250, 455545586718750, 4555455867187500, 45555287544813750, 455552875448137500, 4566844506855468750, 45668445068554687500
Offset: 0

Views

Author

Labos Elemer, Jun 13 2002

Keywords

Examples

			n=3: a(3)=3750 because InvPhi(1000) = {1111, 1255, 1375, 1875, 2008, 2222, 2500, 2510, 2750, 3012, 3750}.
		

Crossrefs

Formula

a(n) = Max{k; A000010(k) = 10^n}.

Extensions

More terms from Max Alekseyev, Apr 26 2010
Showing 1-4 of 4 results.