cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A305474 Coefficients of Hilbert class polynomial H_D(x) as D runs through the numbers -3, -4, -7, -8, -11, -12, ... .

Original entry on oeis.org

0, 1, -1728, 1, 3375, 1, -8000, 1, 32768, 1, -54000, 1, -121287375, 191025, 1, -287496, 1, 884736, 1, -681472000, -1264000, 1, 12771880859375, -5151296875, 3491750, 1, 14670139392, -4834944, 1, 12288000, 1, -16581375, 1, 1566028350940383, -58682638134
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2018

Keywords

Examples

			D   |                0             1         2  3
----+---------------------------------------------
-3  |                0,            1;
-4  |            -1728,            1;
-7  |             3375,            1;
-8  |            -8000,            1;
-11 |            32768,            1;
-12 |           -54000,            1;
-15 |       -121287375,       191025,        1;
-16 |          -287496,            1;
-19 |           884736,            1;
-20 |       -681472000,     -1264000,        1;
-23 |   12771880859375,  -5151296875,  3491750, 1;
-24 |      14670139392,     -4834944,        1;
-27 |         12288000,            1;
-28 |        -16581375,            1;
-31 | 1566028350940383, -58682638134, 39491307, 1;
-32 |      12167000000,    -52250000,        1;
-35 |    -134217728000,    117964800,        1;
-36 |   -1790957481984,   -153542016,        1;
		

Crossrefs

Cf. A014600, A014601, A032354, A305475 (constant).

Programs

  • PARI
    d(n) = 2*n+n%2;
    T(n, k) = polcoef(polclass(-d(n)), k);
    tabf(nn) = for(n=1, nn, for(k=0, poldegree(polclass(-d(n))), print1(T(n, k), ", ")); print)

A225060 Discriminants D < 0 such that h(D) > h(D') for D < D' < 0, negated.

Original entry on oeis.org

3, 15, 23, 39, 47, 71, 95, 119, 167, 191, 215, 239, 311, 431, 479, 551, 671, 719, 791, 839, 959, 1151, 1319, 1511, 1559, 1679, 1991, 2159, 2351, 2519, 2831, 2999, 3071, 3671, 3839, 3911, 4031, 4079, 4199, 4679, 4991, 5351, 5519, 5591, 5711, 6431, 6551, 7391, 8111
Offset: 1

Views

Author

Keywords

Comments

Essentially records in A014600.

References

  • H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. Oxford 5 (1934), pp. 293-301.

Crossrefs

Programs

  • PARI
    r=0;forstep(n=3,1e6,[1,3],t=qfbclassno(-n);if(t>r,r=t;print1(n", ")))

A225061 Record class numbers of discriminants of imaginary quadratic fields: h(-A225060(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 15, 19, 21, 25, 26, 30, 31, 32, 33, 36, 41, 45, 49, 51, 52, 56, 60, 63, 64, 68, 73, 76, 81, 82, 83, 84, 85, 88, 91, 92, 93, 97, 99, 109, 114, 117, 120, 121, 126, 134, 135, 138, 139, 153, 156, 161, 165, 174, 178, 181, 185, 195, 202, 205
Offset: 1

Views

Author

Keywords

References

  • H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. Oxford 5 (1934), pp. 293-301.

Crossrefs

Programs

  • PARI
    r=0;forstep(n=3,1e6,[1,3],t=qfbclassno(-n);if(t>r,print1(r=t", ")))
Showing 1-3 of 3 results.