cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A322710 Negative discriminants with form class number 2 (negated).

Original entry on oeis.org

15, 20, 24, 32, 35, 36, 40, 48, 51, 52, 60, 64, 72, 75, 88, 91, 99, 100, 112, 115, 123, 147, 148, 187, 232, 235, 267, 403, 427
Offset: 1

Views

Author

Jianing Song, Dec 24 2018

Keywords

Comments

This is the full sequence.
The j-invariants for these discriminants are quadratic integers. See the links below for a full list.

Crossrefs

Cf. A133675 (negative discriminants with form class group isomorphic to the trivial group), this sequence (isomorphic to C_2), A328825 (isomorphic to C_3), A329182 (isomorphic to C_2 X C_2), A330219 (isomorphic to C_4).

Programs

  • PARI
    for(n=1, 500, if((-n)%4<=1&&quadclassunit(-n)[1]==2, print1(n, ", ")))

A305475 Constant of Hilbert class polynomial H_D(x) as D runs through the numbers -3, -4, -7, -8, -11, -12, ... .

Original entry on oeis.org

0, -1728, 3375, -8000, 32768, -54000, -121287375, -287496, 884736, -681472000, 12771880859375, 14670139392, 12288000, -16581375, 1566028350940383, 12167000000, -134217728000, -1790957481984, 20919104368024767633, 9103145472000, 884736000
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2018

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff(polclass(-2*n-n%2), 0)}

A305494 Let s(D) = Sum_{(a,b,c)} j((-b+sqrt(D))/(2*a)) where (a,b,c) is taken over all the primitive reduced binary quadratic forms a*x^2+b*xy+c*y^2 with b^2-4*ac = D. This sequence is s(D) as D runs through the numbers -3, -4, -7, -8, -11, -12, ... .

Original entry on oeis.org

0, 1728, -3375, 8000, -32768, 54000, -191025, 287496, -884736, 1264000, -3491750, 4834944, -12288000, 16581375, -39491307, 52250000, -117964800, 153542016, -331531596, 425692800, -884736000, 1122662608, -2257834125, 2835810000, -5541101568, 6896880000, -13136684625
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2018

Keywords

Examples

			In the case D = -15,
j((1+sqrt(-15))/2) + j((1+sqrt(-15))/4) = (-191025-85995*sqrt(5))/2 + (-191025+85995*sqrt(5))/2 = -191025.
  ----+-------------------------------------------+---------
    D | Coefficients of Hilbert class polynomial  |   a(n)
  ----+-------------------------------------------+---------
   -3 |              0,            1;             |        0
   -4 |          -1728,            1;             |     1728
   -7 |           3375,            1;             |    -3375
   -8 |          -8000,            1;             |     8000
  -11 |          32768,            1;             |   -32768
  -12 |         -54000,            1;             |    54000
  -15 |     -121287375,       191025,        1;   |  -191025
  -16 |        -287496,            1;             |   287496
  -19 |         884736,            1;             |  -884736
  -20 |     -681472000,     -1264000,        1;   |  1264000
  -23 | 12771880859375,  -5151296875,  3491750, 1;| -3491750
  -24 |    14670139392,     -4834944,        1;   |  4834944
		

Crossrefs

Showing 1-3 of 3 results.