A014603 Discriminants of imaginary quadratic fields with class number 2 (negated).
15, 20, 24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 187, 232, 235, 267, 403, 427
Offset: 1
References
- H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 229.
Links
- A. Abatzoglou, A. Silverberg, A. V. Sutherland, A, Wong, A framework for deterministic primality proving using elliptic curves with complex multiplication, arXiv:1404.0107 [math.NT], 2014.
- Alexandre Gélin, Everett W. Howe, and Christophe Ritzenthaler, Principally Polarized Squares of Elliptic Curves with Field of Moduli Equal To Q, arXiv:1806.03826 [math.NT], 2018 (see table 1 page 4).
- Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013
- Eric Weisstein's World of Mathematics, Class Number.
- Index entries for sequences related to quadratic fields
Programs
-
Mathematica
Union[ (-NumberFieldDiscriminant[ Sqrt[-#]] &) /@ Select[ Range[500], NumberFieldClassNumber[ Sqrt[-#]] == 2 &]] (* Jean-François Alcover, Jan 04 2012 *)
-
PARI
ok(n)={isfundamental(-n) && quadclassunit(-n).no == 2} \\ Andrew Howroyd, Jul 20 2018
-
Sage
[n for n in (1..500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==2] # G. C. Greubel, Mar 01 2019
Extensions
Offset corrected by Jianing Song, Aug 29 2018
Comments